Skip to main content
Log in

Application of Hirshfeld surfaces, semiempirical calculations and molecular dynamics analysis to study the intermolecular interactions, reactivity and dynamics of two polyoxometalate compounds

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A large study of the theoretical properties was reported in this work. The Hirshfeld surfaces analysis has confirmed that the intermolecular interactions in the crystal packing of K5[HP2Mo5O23]·10H2O (1) and [C7H7N2]2[H2P2Mo5O23]0.5·3.5H2O (2) compounds has been dominated by hydrogen bonding which makes the hydrogen atoms of polyanions, water molecules and organic cations play the most important role in the stability of crystal structures. Applying semiempirical calculations on the compounds, we get information about their reactivity. In this context, several discussions concerning the frontier molecular orbital, electron density, molecular electrostatic potential, thermodynamic properties and local ionization potential have been mentioned. Also, the molecular dynamics analysis performed on the compounds structures allows us to study the dynamics of this type of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, Berlin

    Book  Google Scholar 

  2. Pope MT, Müller A (1994) Polyoxometalates from platonic solids to anti-retroviral activity. Kluwer, Dordrecht

    Book  Google Scholar 

  3. Pope MT, Müller A (2001) Polyoxometalate chemistry from topology via self-assembly to applications. Kluwer, Dordrecht

    Google Scholar 

  4. Borrás-Almenar JJ, Coronado E, Müller A, Pope M (2003) Polyoxometalate molecular science. Kluwer, Dordrecht

    Book  Google Scholar 

  5. Zhuang J, Yan L, Liu C, Su Z (2009) A quantum chemical study of the structure, bonding characteristics and nonlinear optical properties of aryloxido and salicylaldehydo derivatives of [XW5O18]3– (X = Zr or Ti). Eur J Inorg Chem 2009(17):2529–2535

    Article  CAS  Google Scholar 

  6. Lopez X, Graaf Cd, Maestre JM, Bénard M, Rohmer MM, Bo C, Poblet JM (2005) Highly reduced polyoxometalates: ab initio and DFT study of [PMo8V4O40(VO)4]5−. J Chem Theory Comput 1:856–861

    Article  CAS  PubMed  Google Scholar 

  7. Liu H, Bandeira NAG, Félix V, Calhorda MJ (2013) Tris(organotin)tungstogermanate, a sandwich organometallic derivative of a Keggin-type polyoxometalate: synthesis and DFT study. Eur J Inorg Chem 10–11:1713–1719

    Article  CAS  Google Scholar 

  8. Gracia J, Poblet JM, Fernández JA, Autschbach J, Kazansky LP (2006) DFT calculations of the 183 W NMR chemical shifts in reduced polyoxotungstates. Eur J Inorg Chem 6:1149–1154

    Article  CAS  Google Scholar 

  9. Liu CG, Guan W, Yan LK, Su ZM (2011) Bonding interactions between nitrous oxide (N2O) and mono-ruthenium substituted Keggin-type polyoxometalates: electronic structures of ruthenium/N2O adducts. Eur J Inorg Chem 4:489–494

    Article  CAS  Google Scholar 

  10. Guan W, Yang GC, Yan LK, Su ZM (2006) How do the different defect structures and element substitutions affect the nonlinear optical properties of lacunary Keggin polyoxometalates? A DFT study. Eur J Inorg Chem 20:4179–4183

    Article  CAS  Google Scholar 

  11. Rohmer MM, Bénard M (2002) Structural versatility in polyoxometalates and in some linear trimetallic complexes: an electronic interpretation. J Clust Sci 13:333–353

    Article  CAS  Google Scholar 

  12. Sha C, LiKai Y, Ping S, Wei G, ZhongMin S, Chia Chung S (2012) Electronic properties and stabilities of methoxy-substituted Lindqvist polyoxometalates [Nb2W4O19CH3]3− by DFT. Chin Sci Bull 57:976–983

    Article  CAS  Google Scholar 

  13. Ping S, LiKai Y, Wei G, JingDong F, ChunGuang L, ZhongMin S (2009) The comparative investigation on redox property and second-order nonlinear response of Keggin-type α-[PM12O39NPh]3− (M = W and Mo) and Mo6NPh. Chin Sci Bull 54:203–211

    Google Scholar 

  14. ChunGuang L, XiaoHui G, ZhongMin S (2012) Theoretical studies on phosphoraniminato derivatives of Keggin-type polyoxometalates [PW11O39{MVNPPh3}]3− (M = Fe, Ru): electronic structures and bonding features. Chin Sci Bull 55:1910–1915

    Article  CAS  Google Scholar 

  15. Liang F, Wei G, LiKai Y, GuoChun Y, ZhongMin S, Lin X (2008) Density functional study of magnetic exchange of dinuclear manganese complexes with the heteropolymolyanion: [Mn II2 (Xn+Mo9O33)2]2(n−10)− (X = PV, AsV, SeVI). Chin Sci Bull 51:1174–1181

    Article  CAS  Google Scholar 

  16. Zheng Y, Liu J, Yang X, Wang J (2014) Interaction between phosphomolybdic anion and imidazolium cation in polyoxometalates-based ionic liquids: a quantum mechanics study. J Mol Model 20:2495–2506

    Article  CAS  PubMed  Google Scholar 

  17. Cong S, Yan LK, Wen SZ, Guan W, Su ZM (2011) Quantum chemical studies of Lindqvist-type polyoxometalates containing late 3d transition metals ([(py)MIIW5O18]42 (M: Fe Co, Ni)): MII–N bonding and second-order nonlinear optical properties. Theor Chem Acc 130:1043–1053

    Article  CAS  Google Scholar 

  18. de Graaf C, Caballol R, Romo S, Poblet JM (2009) Ab initio study of the singlet-triplet splitting in reduced polyoxometalates. Theor Chem Acc 123:3–10

    Article  CAS  Google Scholar 

  19. Si YL, Liu CG, Wang EB, Su ZM (2009) Theoretical study on the two-dimensional second-order nonlinear optical properties: a series of charge-transfer covalently bonded organoimido derived hexamolybdate complexes. Theor Chem Acc 122:217–226

    Article  CAS  Google Scholar 

  20. Guan W, Liu CG, Song P, Yang GC, Su ZM (2009) Quantum chemical study of redox-switchable second-order optical nonlinearity in Keggin-type organoimido derivative [PW11O39(ReNC6H5)]n− (n: 2–4). Theor Chem Acc 122:265–273

    Article  CAS  Google Scholar 

  21. Yue SM, Yan LK, Su ZM, Li GH, Chen YG, Ma JF, Xu HB, Zhang HJ (2004) Crystal and electronic structure of a protonated imidazole diphosphopentamolybdenum(VI) polyoxometalate: (C4H7N2)4[HP2Mo5O23]EH3OE4 5H2O. J Coord Chem 57:123–132

    Article  CAS  Google Scholar 

  22. Li F, Hu X, Sa R, Niu L (2014) Molecular orbital closed loops analysis of the third-order NLO response of polyanion [M8O26]4− (M: Cr, Mo, W): a TDDFT study. Struct Chem 25:539–549

    Article  CAS  Google Scholar 

  23. Li J (2002) Electronic structures, (d-p)p conjugation effects, and spectroscopic properties of polyoxometalates: M6O19 2− (M = Cr, Mo, W). J Clust Sci 13:137–163

    Article  CAS  Google Scholar 

  24. Maalaoui A, Pérez O, Rzaigui M, Akriche ST (2017) Enhancement with Hirshfeld surface analysis of structural, electrical, dielectric and luminescent performance of two bioactive V-substituted polytungstates. J Alloys Compd 695:1061–1072

    Article  CAS  Google Scholar 

  25. Grabau M, Forster J, Heussner K, Streb C (2011) Synthesis and theoretical Hirshfeld analysis of a supramolecular heteropolyoxovanadate architecture. Eur J Inorg Chem 11:1719–1724

    Article  CAS  Google Scholar 

  26. Harchani A, Haddad A (2017) New diphosphopentamolybdate K5[HP2Mo5O23]·10H2O: synthesis, structure, and characterization. Crystallogr Rep 62:1022–1027

    Article  CAS  Google Scholar 

  27. Harchani A, Haddad A (2015) Synthesis, structure and property of a new diphosphopentamolybdates [C7H7N2]2[H2P2Mo5O23]0 5·3 5H2O. J Clust Sci 26:1645–1653

    Article  CAS  Google Scholar 

  28. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. Cryst Eng Commun 4:378–392

    Article  CAS  Google Scholar 

  29. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal-explorer 3 0. University of Western Australia, Perth

    Google Scholar 

  30. Jayatilaka D, Grimwood DJ, Lee A et al (2005) TONTO, a system for computational chemistry. The University of Western Australia, Nedlands, Nedlands

    Google Scholar 

  31. Spartan 14 (2014) Wavefunction Inc Irvine, CA 92,612, USA

  32. Hypercube (2008) Inc Hyperchem, 8 0 6, Hypercube, Inc, USA

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Harchani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harchani, A., Haddad, A. Application of Hirshfeld surfaces, semiempirical calculations and molecular dynamics analysis to study the intermolecular interactions, reactivity and dynamics of two polyoxometalate compounds. Theor Chem Acc 137, 90 (2018). https://doi.org/10.1007/s00214-018-2279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2279-z

Keywords

Navigation