Advertisement

Application of Hirshfeld surfaces, semiempirical calculations and molecular dynamics analysis to study the intermolecular interactions, reactivity and dynamics of two polyoxometalate compounds

  • Ali Harchani
  • Amor Haddad
Regular Article
  • 39 Downloads

Abstract

A large study of the theoretical properties was reported in this work. The Hirshfeld surfaces analysis has confirmed that the intermolecular interactions in the crystal packing of K5[HP2Mo5O23]·10H2O (1) and [C7H7N2]2[H2P2Mo5O23]0.5·3.5H2O (2) compounds has been dominated by hydrogen bonding which makes the hydrogen atoms of polyanions, water molecules and organic cations play the most important role in the stability of crystal structures. Applying semiempirical calculations on the compounds, we get information about their reactivity. In this context, several discussions concerning the frontier molecular orbital, electron density, molecular electrostatic potential, thermodynamic properties and local ionization potential have been mentioned. Also, the molecular dynamics analysis performed on the compounds structures allows us to study the dynamics of this type of compounds.

Keywords

Semiempirical calculations Hirshfeld surfaces Polyoxometalate Theoretical study Molecular dynamics 

Notes

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Supplementary material

214_2018_2279_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. 1.
    Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Pope MT, Müller A (1994) Polyoxometalates from platonic solids to anti-retroviral activity. Kluwer, DordrechtCrossRefGoogle Scholar
  3. 3.
    Pope MT, Müller A (2001) Polyoxometalate chemistry from topology via self-assembly to applications. Kluwer, DordrechtGoogle Scholar
  4. 4.
    Borrás-Almenar JJ, Coronado E, Müller A, Pope M (2003) Polyoxometalate molecular science. Kluwer, DordrechtCrossRefGoogle Scholar
  5. 5.
    Zhuang J, Yan L, Liu C, Su Z (2009) A quantum chemical study of the structure, bonding characteristics and nonlinear optical properties of aryloxido and salicylaldehydo derivatives of [XW5O18]3– (X = Zr or Ti). Eur J Inorg Chem 2009(17):2529–2535CrossRefGoogle Scholar
  6. 6.
    Lopez X, Graaf Cd, Maestre JM, Bénard M, Rohmer MM, Bo C, Poblet JM (2005) Highly reduced polyoxometalates: ab initio and DFT study of [PMo8V4O40(VO)4]5−. J Chem Theory Comput 1:856–861CrossRefPubMedGoogle Scholar
  7. 7.
    Liu H, Bandeira NAG, Félix V, Calhorda MJ (2013) Tris(organotin)tungstogermanate, a sandwich organometallic derivative of a Keggin-type polyoxometalate: synthesis and DFT study. Eur J Inorg Chem 10–11:1713–1719CrossRefGoogle Scholar
  8. 8.
    Gracia J, Poblet JM, Fernández JA, Autschbach J, Kazansky LP (2006) DFT calculations of the 183 W NMR chemical shifts in reduced polyoxotungstates. Eur J Inorg Chem 6:1149–1154CrossRefGoogle Scholar
  9. 9.
    Liu CG, Guan W, Yan LK, Su ZM (2011) Bonding interactions between nitrous oxide (N2O) and mono-ruthenium substituted Keggin-type polyoxometalates: electronic structures of ruthenium/N2O adducts. Eur J Inorg Chem 4:489–494CrossRefGoogle Scholar
  10. 10.
    Guan W, Yang GC, Yan LK, Su ZM (2006) How do the different defect structures and element substitutions affect the nonlinear optical properties of lacunary Keggin polyoxometalates? A DFT study. Eur J Inorg Chem 20:4179–4183CrossRefGoogle Scholar
  11. 11.
    Rohmer MM, Bénard M (2002) Structural versatility in polyoxometalates and in some linear trimetallic complexes: an electronic interpretation. J Clust Sci 13:333–353CrossRefGoogle Scholar
  12. 12.
    Sha C, LiKai Y, Ping S, Wei G, ZhongMin S, Chia Chung S (2012) Electronic properties and stabilities of methoxy-substituted Lindqvist polyoxometalates [Nb2W4O19CH3]3− by DFT. Chin Sci Bull 57:976–983CrossRefGoogle Scholar
  13. 13.
    Ping S, LiKai Y, Wei G, JingDong F, ChunGuang L, ZhongMin S (2009) The comparative investigation on redox property and second-order nonlinear response of Keggin-type α-[PM12O39NPh]3− (M = W and Mo) and Mo6NPh. Chin Sci Bull 54:203–211Google Scholar
  14. 14.
    ChunGuang L, XiaoHui G, ZhongMin S (2012) Theoretical studies on phosphoraniminato derivatives of Keggin-type polyoxometalates [PW11O39{MVNPPh3}]3− (M = Fe, Ru): electronic structures and bonding features. Chin Sci Bull 55:1910–1915CrossRefGoogle Scholar
  15. 15.
    Liang F, Wei G, LiKai Y, GuoChun Y, ZhongMin S, Lin X (2008) Density functional study of magnetic exchange of dinuclear manganese complexes with the heteropolymolyanion: [Mn2II(Xn+Mo9O33)2]2(n−10)− (X = PV, AsV, SeVI). Chin Sci Bull 51:1174–1181CrossRefGoogle Scholar
  16. 16.
    Zheng Y, Liu J, Yang X, Wang J (2014) Interaction between phosphomolybdic anion and imidazolium cation in polyoxometalates-based ionic liquids: a quantum mechanics study. J Mol Model 20:2495–2506CrossRefPubMedGoogle Scholar
  17. 17.
    Cong S, Yan LK, Wen SZ, Guan W, Su ZM (2011) Quantum chemical studies of Lindqvist-type polyoxometalates containing late 3d transition metals ([(py)MIIW5O18]42 (M: Fe Co, Ni)): MII–N bonding and second-order nonlinear optical properties. Theor Chem Acc 130:1043–1053CrossRefGoogle Scholar
  18. 18.
    de Graaf C, Caballol R, Romo S, Poblet JM (2009) Ab initio study of the singlet-triplet splitting in reduced polyoxometalates. Theor Chem Acc 123:3–10CrossRefGoogle Scholar
  19. 19.
    Si YL, Liu CG, Wang EB, Su ZM (2009) Theoretical study on the two-dimensional second-order nonlinear optical properties: a series of charge-transfer covalently bonded organoimido derived hexamolybdate complexes. Theor Chem Acc 122:217–226CrossRefGoogle Scholar
  20. 20.
    Guan W, Liu CG, Song P, Yang GC, Su ZM (2009) Quantum chemical study of redox-switchable second-order optical nonlinearity in Keggin-type organoimido derivative [PW11O39(ReNC6H5)]n− (n: 2–4). Theor Chem Acc 122:265–273CrossRefGoogle Scholar
  21. 21.
    Yue SM, Yan LK, Su ZM, Li GH, Chen YG, Ma JF, Xu HB, Zhang HJ (2004) Crystal and electronic structure of a protonated imidazole diphosphopentamolybdenum(VI) polyoxometalate: (C4H7N2)4[HP2Mo5O23]EH3OE4 5H2O. J Coord Chem 57:123–132CrossRefGoogle Scholar
  22. 22.
    Li F, Hu X, Sa R, Niu L (2014) Molecular orbital closed loops analysis of the third-order NLO response of polyanion [M8O26]4− (M: Cr, Mo, W): a TDDFT study. Struct Chem 25:539–549CrossRefGoogle Scholar
  23. 23.
    Li J (2002) Electronic structures, (d-p)p conjugation effects, and spectroscopic properties of polyoxometalates: M6O19 2− (M = Cr, Mo, W). J Clust Sci 13:137–163CrossRefGoogle Scholar
  24. 24.
    Maalaoui A, Pérez O, Rzaigui M, Akriche ST (2017) Enhancement with Hirshfeld surface analysis of structural, electrical, dielectric and luminescent performance of two bioactive V-substituted polytungstates. J Alloys Compd 695:1061–1072CrossRefGoogle Scholar
  25. 25.
    Grabau M, Forster J, Heussner K, Streb C (2011) Synthesis and theoretical Hirshfeld analysis of a supramolecular heteropolyoxovanadate architecture. Eur J Inorg Chem 11:1719–1724CrossRefGoogle Scholar
  26. 26.
    Harchani A, Haddad A (2017) New diphosphopentamolybdate K5[HP2Mo5O23]·10H2O: synthesis, structure, and characterization. Crystallogr Rep 62:1022–1027CrossRefGoogle Scholar
  27. 27.
    Harchani A, Haddad A (2015) Synthesis, structure and property of a new diphosphopentamolybdates [C7H7N2]2[H2P2Mo5O23]0 5·3 5H2O. J Clust Sci 26:1645–1653CrossRefGoogle Scholar
  28. 28.
    Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. Cryst Eng Commun 4:378–392CrossRefGoogle Scholar
  29. 29.
    Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal-explorer 3 0. University of Western Australia, PerthGoogle Scholar
  30. 30.
    Jayatilaka D, Grimwood DJ, Lee A et al (2005) TONTO, a system for computational chemistry. The University of Western Australia, Nedlands, NedlandsGoogle Scholar
  31. 31.
    Spartan 14 (2014) Wavefunction Inc Irvine, CA 92,612, USAGoogle Scholar
  32. 32.
    Hypercube (2008) Inc Hyperchem, 8 0 6, Hypercube, Inc, USAGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Matériaux, Cristallochimie et de Thermodynamique Appliquée, Faculté des Sciences MonastirUniversité de MonastirMonastirTunisia

Personalised recommendations