Ground-state energy for confined H2: a variational approach

  • Hugo de Oliveira Batael
  • Elso Drigo Filho
Regular Article


Ground-state energies for confined H2 molecule are computed using the variational method. The approach proposed here uses a molecular wave function of the valence bond type, written as the sum of the covalent term and the ionic term. The molecule is confined in an impenetrable prolate spheroidal box. The atomic orbitals are built from a previous suggestion inspired by the factorization of the Schrödinger equation. The aim of this work is to propose a new wave function to be used for the confined hydrogen molecule. The polarizability and quadrupole moment are also calculated. The results obtained are in agreement with other results present in the literature, and they lead to a discussion about the relevance of the ionic term in the wave function.


Molecular confinement Hydrogen molecule Variational method Ground-state energy Polarizability Quadrupole moment 


  1. 1.
    Sabin JR, Brandas EJ (2009) Advances in quantum chemistry: theory of confined quantum systems-part one, vol 57. Academic Press, New YorkGoogle Scholar
  2. 2.
    Sabin JR, Brandas EJ (2009) Advances in quantum chemistry: theory of confined quantum systems-part two, vol 58. Academic Press, New YorkGoogle Scholar
  3. 3.
    Saha B, Mukherjee T, Mukherjee P et al (2002) Theor Chem Acc 108:305–310CrossRefGoogle Scholar
  4. 4.
    Montgomery HE, Pupyshev VI (2015) Theor Chem Acc 134:1598CrossRefGoogle Scholar
  5. 5.
    Mateos-Cortés S, Ley-Koo E, Cruz SA (2002) Int J Quantum Chem 86:376–389CrossRefGoogle Scholar
  6. 6.
    LeSar R, Herschbach DR (1983) J Chem Phys 87:5202–5206CrossRefGoogle Scholar
  7. 7.
    Connerade JP, Dolmatov VK, Lakshmi PA (2000) J Phys B At Mol Opt Phys 33:251–264CrossRefGoogle Scholar
  8. 8.
    Lv H, Yao M, Li Q, Liu R, Liu B, Yao Z, Liu D, Liu Z, Liu J, Chen Z, Zou B, Cui T, Liu B (2015) Sci Rep 5:13234CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Trzaskowsk B, Adamowicz L (2009) Theor Chem Acc 124:95–103CrossRefGoogle Scholar
  10. 10.
    Cottrell TL (1951) Trans Faraday Soc 47:337–342CrossRefGoogle Scholar
  11. 11.
    Singh KK (1964) Physica 30:211–222CrossRefGoogle Scholar
  12. 12.
    Ley-Koo E, Cruz SA (1981) J Chem Phys 74:4603–4610CrossRefGoogle Scholar
  13. 13.
    Sarsa A, Le Sech C (2012) J Phys B At Mol Opt Phys 45:205101CrossRefGoogle Scholar
  14. 14.
    Micca Longo G, Longo S, Giordano D (2015) Phys Scr 90:025403CrossRefGoogle Scholar
  15. 15.
    da Silva JF, Silva FR, Drigo Filho E (2016) Int J Quantum Chem 116:497–503CrossRefGoogle Scholar
  16. 16.
    LeSar R, Herschbach DR (1981) J Phys Chem 85:2084–2798Google Scholar
  17. 17.
    Pang T (1994) Phys Rev A 49:1709–1713CrossRefPubMedGoogle Scholar
  18. 18.
    Cruz SA, Soullard J, Gamaly E (1999) Phys Rev A 60:2207CrossRefGoogle Scholar
  19. 19.
    Colín-Rodríguez R, Cruz SA (2010) J Phys B At Mol Opt Phys 43:235102CrossRefGoogle Scholar
  20. 20.
    Powers A, Marsalek O, Xu M, Ulivi L, Colognesi D, Tuckerman ME, Bacic Z (2016) J Phys Chem Lett 7:308CrossRefPubMedGoogle Scholar
  21. 21.
    Cruz SA, Soullard J (2004) J Chem Phys Lett 391:138–142CrossRefGoogle Scholar
  22. 22.
    Jena NK, Tripathy MK, Samanta AK et al (2012) Theor Chem Acc 131:1205CrossRefGoogle Scholar
  23. 23.
    Kozłoxwska J, Roztoczyńska A, Bartkowiak W (2015) Chem Phys 456:98–105CrossRefGoogle Scholar
  24. 24.
    Silva FR (2014) Confinamento das moléculas H2 e O2 como modelo para o estudo da ligação ligante-sítio ativo em macromoléculas biológicas. Ph.D Thesis, São Jóse do Rio Preto, SP, Universidade Estadual Paulista (UNESP), Available from: Repositório Institucional UNESP. (in portuguese)Google Scholar
  25. 25.
    Levine IN (1991) Quantum chemistry. Prentice Hall, New YorkGoogle Scholar
  26. 26.
    Drigo Filho E, Ricotta RM (2002) Phys Lett A 299:137–143CrossRefGoogle Scholar
  27. 27.
    Schiff LI (1968) Quantum mechanics. McGraw-Hill, New YorkGoogle Scholar
  28. 28.
    Silva FR, Drigo Filho E (2010) Mod Phys Lett A 25:641CrossRefGoogle Scholar
  29. 29.
    Slater JC (1963) Quantum theory of molecules and solids: electronic structure of molecules. McGraw-Hill, New YorkGoogle Scholar
  30. 30.
    Kolos W, Roothaan CCJ (1960) Rev Mod Phys 32:219–232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Institute of Biosciences, Humanities and Exact SciencesSão Paulo State University (UNESP)São José do Rio PretoBrazil

Personalised recommendations