Advertisement

Aromatic sulfur compounds oxidation with H2O2 over fully coordinated and defect sites in Ti-beta zeolites: evaluation by density functional theory

  • Hanlu Wang
  • YiQiang Deng
  • Rujin Zhou
Regular Article
  • 116 Downloads

Abstract

The oxidative desulfurization mechanisms of aromatic sulfur compounds, including thiophene, benzothiophene, and dibenzothiophene, with H2O2 on fully coordinated and defective Ti sites on Ti-beta zeolites are investigated by means of density functional theory calculations. In this work, three current concerns are explored: First is the oxidation of sulfides into the sulfoxides and sulfones in the presence of H2O2; the second is the comparison between the sulfide oxidation mechanism on T5 and T2 defective sites in Ti-beta zeolites; and finally the comparison with the oxidation mechanism on fully coordinated Ti site on the Ti-beta zeolite. The model shows that T5 defect site in Ti-beta is the most catalytically active site for the oxidation of aromatic sulfides.

Keywords

Ti-beta Oxidative desulfurization Aromatic sulfur compounds Sulfone DFT 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21403038), Training Program for Outstanding Young Teachers in Colleges and Universities in Guangdong Province (YQ2015116), Guangdong Provincial Natural Science Foundation (2015A030313892, 2014A010105051), and Petrochemical Industry Transformation and Upgrading Technology Innovation Public Service Platform in Maoming City.

Supplementary material

214_2018_2241_MOESM1_ESM.doc (1.9 mb)
Supplementary material 1 (DOC 1960 kb)

References

  1. 1.
    Ali MF, Al-Malki A, El-Ali B, Martinie G, Siddiqui MN (2006) Fuel 85(10):1354–1363CrossRefGoogle Scholar
  2. 2.
    Zeng X, Xiao X, Li Y, Chen J, Wang H (2017) Appl Catal B Environ 209:98–109CrossRefGoogle Scholar
  3. 3.
    Du S, Li F, Sun Q, Wang N, Jia M, Yu J (2016) Chem Commun 52(16):3368–3371CrossRefGoogle Scholar
  4. 4.
    Wang L, Xiao F (2016) Green chemistry and sustainable technology. Springer, Berlin Heidelberg, pp 373–391Google Scholar
  5. 5.
    Wang L, Wang Y, Liu Y, Chen L, Cheng S, Gao G, He M, Wu P (2008) Micropor Mesopor Mat 1–3:435–444CrossRefGoogle Scholar
  6. 6.
    Wang Y, Li G, Wang X, Jin C (2005) Chinese J Catal 26(7):567–570Google Scholar
  7. 7.
    Kong L, Li G, Wang X (2004) Catal Lett 92(3–4):163–167CrossRefGoogle Scholar
  8. 8.
    Kong L, Li G, Wang X, Wu B (2006) Energy&Fuels 20:896–902Google Scholar
  9. 9.
    Wu P, Kubota Y, Yokoi T (2014) ACS Catal 4(1):23–30CrossRefGoogle Scholar
  10. 10.
    Hulea V, Fajula F, Bousquet J (2001) J Catal 198:179–186CrossRefGoogle Scholar
  11. 11.
    Sengupta A, Kamble PD, Basu JK, Sengupta S (2012) Ind Eng Chem Res 51(1):147–157CrossRefGoogle Scholar
  12. 12.
    Leng K, Li X, Ye G, Du Y, Sun Y, Xu W (2016) Catal Sci Technol 6(20):7615–7622CrossRefGoogle Scholar
  13. 13.
    Blasco T, Camblor MA, Corma A, Perezpariente J (1993) J Am Chem Soc 115(25):11806–11813CrossRefGoogle Scholar
  14. 14.
    Newsam JM, Treacy MMJ, Koetsier WT, Gruyter CBD (1988) Proc R Soc Lond A 420(1859):375–405CrossRefGoogle Scholar
  15. 15.
    Corma A, Rey F, Valencia S (2001) Chem Commun 16(16):1486–1487CrossRefGoogle Scholar
  16. 16.
    Ohsuna T, Liu Z, Terasaki O, Hiraga K, Camblor MA (2002) J Phys Chem B 106(22):5673–5678CrossRefGoogle Scholar
  17. 17.
    Deka RC, Nasluzov VA, Ivanova Shor EA, Shor AM, Vayssilov GN, Rösch N (2005) J Phys Chem B 109(51):24304–24310CrossRefPubMedGoogle Scholar
  18. 18.
    Gamba A, Tabacchi G, Fois E (2009) J Phys Chem A 113(52):15006–15015CrossRefPubMedGoogle Scholar
  19. 19.
    Yuan S, Si H, Fu A, Chu T, Tian F, Duan Y-B, Wang J (2011) J Phys Chem A 115(5):940–947CrossRefPubMedGoogle Scholar
  20. 20.
    Van der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) J Phys Chem C 116(9):5499–5508CrossRefGoogle Scholar
  21. 21.
    Yang G, Pidko EA, Hensen EJM (2013) J Phys Chem C 117(8):3976–3986CrossRefGoogle Scholar
  22. 22.
    Montejo-Valencia BD, Curet-Arana MC (2015) J Phys Chem C 119(8):4148–4157CrossRefGoogle Scholar
  23. 23.
    Montejo-Valencia BD, Salcedo-Pérez JL, Curet-Arana MC (2016) J Phys Chem C 120(4):2176–2186CrossRefGoogle Scholar
  24. 24.
    Shetty S, Kulkarni BS, Kanhere DG, Goursot A, Pal S (2008) J Phys Chem B 112(9):2573–2579CrossRefPubMedGoogle Scholar
  25. 25.
    Panyaburapa W, Nanok T, Limtrakul J (2007) J Phys Chem C 111(8):3433–3441CrossRefGoogle Scholar
  26. 26.
    Sirijaraensre J, Limtrakul J (2009) Phys Chem Chem Phys 11(3):578–585CrossRefPubMedGoogle Scholar
  27. 27.
    Van Speybroeck V, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, Lesthaeghe D, Ghysels A, Marin GB, Waroquier M (2011) J Am Chem Soc 133(4):888–899CrossRefPubMedGoogle Scholar
  28. 28.
    Konda SSM, Caratzoulas S, Vlachos DG (2016) ACS Catal 6(1):123–133CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Valerio G, Goursot A, Vetrivel R, Malkina O, Malkin V, Salahub DR (1998) J Am Chem Soc 120(44):11426–11431CrossRefGoogle Scholar
  31. 31.
    Li Y-P, Head-Gordon M, Bell AT (2014) ACS Catal 4(5):1537–1545CrossRefGoogle Scholar
  32. 32.
    Boronat M, Corma A, Renz M (2006) J Phys Chem B 110(42):21168–21174CrossRefPubMedGoogle Scholar
  33. 33.
    Boronat M, Concepcion P, Corma A, Renz M, Valencia S (2005) J Catal 234:111–118CrossRefGoogle Scholar
  34. 34.
    Sirijaraensre J, Limtrakul J (2013) Phys Chem Chem Phys 15(41):18093–18100CrossRefPubMedGoogle Scholar
  35. 35.
    Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13(14):6670–6688CrossRefPubMedGoogle Scholar
  36. 36.
    Zeng X, Wang H, DeYonker NJ, Mo G, Zhou R, Zhao C (2014) Theor Chem Acc 133:1498–1503CrossRefGoogle Scholar
  37. 37.
    Stewart JJP (2007) J Mol Model 13(12):1173–1213CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Reed AE, Weinstock RB, Weinhold F (1985) J. Chem. Phys. 83:735–746CrossRefGoogle Scholar
  39. 39.
    Frisch MJ et al (2013) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford, CTGoogle Scholar
  40. 40.
    Sastre G, Corma A (1999) Chem Phys Lett 302(5–6):447–453CrossRefGoogle Scholar
  41. 41.
    Xu H, Han Z, Zhang D, Liu C (2015) J Mol Catal A Chem 398:297–303CrossRefGoogle Scholar
  42. 42.
    Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Energy Fuels 14:1232–1239CrossRefGoogle Scholar
  43. 43.
    Wells DH, Delgass WN, Thomson KT (2004) J Am Chem Soc 126(9):2956–2962CrossRefPubMedGoogle Scholar
  44. 44.
    Sever RR, Root TW (2003) J Phys Chem B 107(17):4080–4089CrossRefGoogle Scholar
  45. 45.
    Yudanov IV, Gisdakis P, Valentin CD, Rösch N (1999) Eur J Inorg Chem 12:2135–2145CrossRefGoogle Scholar
  46. 46.
    Tantanak D, Vincent MA, Hillier IH (1998) Chem Commun 9:1031–1032CrossRefGoogle Scholar
  47. 47.
    Sever RR, Root TW (2003) J Phys Chem B 107(17):4090–4099CrossRefGoogle Scholar
  48. 48.
    Limtrakul J, Inntam C, Truong TN (2004) J Mol Catal A 27:139–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemical EngineeringGuangdong University of Petrochemical TechnologyMaomingPeople’s Republic of China

Personalised recommendations