Quantum chemical study on the reaction mechanism and kinetics of Cl-initiated oxidation of methyl n-propyl ether
Abstract
Oxidation of methyl n-propyl ether (CH3CH2CH2OCH3) molecule initiated by Cl atoms has been carried out using a dual level of quantum chemical investigation to understand the mechanistic pathways and kinetics of the H-atom abstraction reaction. Firstly, geometry optimization and frequency calculations for all the species are performed using BHandHLYP/6-311++G(d,p) level of theory at 298 K, and energetic calculations are further refined using CCSD(T) method with the same basis set to explore all stationary points on potential energy profile. We have observed from the energy profile that H-atom abstraction from –OCH2 group of CH3CH2CH2OCH3 is the kinetically predominant pathway. The reported bond dissociation energy for the dominant path is found to be in good agreement with the experimentally determined value. Further, standard Gibbs free energies (ΔG°298) and standard enthalpies (ΔH°298) analyses also indicate that the H-atom abstraction from –OCH2 group of CH3CH2CH2OCH3 is thermodynamically more favourable than other abstraction channels. The rate coefficients are also reported using canonical transition state theory, which is found to be in good agreement with the experimental data. The atmospheric lifetime of title molecule is also calculated.
Keywords
OVOCs MnPE BHandHLYP CCSD(T) CTST BDENotes
Acknowledgements
SP and NKG are thankful to University Grant Commission (UGC), New Delhi, for providing Dr. D. S. Kothari Post-Doctoral Fellowship (Award Letter Nos: F.4-2/2006(BSR)/CH/16-17/0152 and F.4-2/2006(BSR)/CH/14-15/0217).
Supplementary material
References
- 1.Kun W, Maofa G, Weigang W (2010) Atmos Environ 44:1847–1850CrossRefGoogle Scholar
- 2.Mellouki A, LeBras G, Sidebottom H (2003) Chem Rev 103:5077–5096CrossRefGoogle Scholar
- 3.Mellouki A, Wallington TJ, Chen J (2015) Chem Rev 115:3984–4014CrossRefGoogle Scholar
- 4.Singh H, Chen Y, Standt A, Jacob D, Blake D, Heikes B, Snow J (2001) Nature 410:1078–1081CrossRefGoogle Scholar
- 5.Atkinson R, Arey J (2003) Chem Rev 103:4605–4638CrossRefGoogle Scholar
- 6.Taccone RA, Moreno A, Colmenar I, Salgado S, Martín MP, Cabañas B (2016) Atmos Environ 127:80–89CrossRefGoogle Scholar
- 7.Finlayson-Pitts BJ, Pitts JN (1997) Science 276:1045–1051CrossRefGoogle Scholar
- 8.Atkinson R (2000) Atmos Environ 34:2063–2101CrossRefGoogle Scholar
- 9.Müller H (2002) Tetrahydrofuran. In: Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co, KGaAGoogle Scholar
- 10.Enomoto K, Maekawa Y, Katsemura Y, Miyazaki T, Yoshida M, Hamana H, Narita T (2005) Macromolecules 38:9584–9593CrossRefGoogle Scholar
- 11.Worrell E, Phylipsen D, Einstein D, Martin N (2000) Energy use and energy intensity of the US chemical industry (No. LBNL–44314). Lawrence Berkeley National Laboratory, CACrossRefGoogle Scholar
- 12.Semelsberger TA, Borup RL, Greene HL (2006) J Power Sources 156:497–511CrossRefGoogle Scholar
- 13.Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) Fuel 87:1014–1030CrossRefGoogle Scholar
- 14.Dimethyl Ether (DME) Technology and Markets (2008) In Chemsystems PERP Program; PERP07/08-S3Google Scholar
- 15.Langer S, Ljungstroem E (1994) J Phys Chem 98:5906–5912CrossRefGoogle Scholar
- 16.Nielsen OJ, Sehested J, Langer S, Ljungström E, Wängberg I (1995) Chem Phys Lett 238:359–364CrossRefGoogle Scholar
- 17.Mcloughlin P, Kane R, Shanahan I (1993) Int J Chem Kinet 25:137–149CrossRefGoogle Scholar
- 18.Chen L, Uchimaru T, Kutsuna S, Tokuhashi K, Sekiya A, Okamoto H (2009) Int J Chem Kinet 41:490–497CrossRefGoogle Scholar
- 19.Atkinson R, Carter WP (1984) Chem Rev 84:437–470CrossRefGoogle Scholar
- 20.Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere theory, experiments, and applications. Academic Press, New YorkGoogle Scholar
- 21.Atkinson R, Baulch D, Cox R, Crowley J, Hampson R, Hynes R, Jenkin M, Rossi M, Troe J (2006) Atmos Chem Phys 6:3625–4055CrossRefGoogle Scholar
- 22.Perry R, Atkinson R (1977) Pitts JJr. J Chem Phys 67:611–614CrossRefGoogle Scholar
- 23.Michaela J, Nava D, Payne W, Stiefb L (1979) J Chem Phys 70:3652–3656CrossRefGoogle Scholar
- 24.Lloyd AC, Darnall KR, Winer AM, Pitts JN (1976) Chem Phys Lett 42:205–209CrossRefGoogle Scholar
- 25.Langer S, Ljungström E (1994) Int J Chem Kinet 26:367–380CrossRefGoogle Scholar
- 26.Wallington TJ, Skewes LM, Siegl WO, Wu CH, Japar SM (1988) Int J Chem Kinet 20:867–875CrossRefGoogle Scholar
- 27.Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Lane SI (2012) Atmos Environ 47:104–110CrossRefGoogle Scholar
- 28.Gour NK, Mishra BK, Hussain I, Deka RC (2016) Struct Chem 27:1491–1499CrossRefGoogle Scholar
- 29.SulbaekAndersen MP, Svendsen SB, Østerstrøm FF, Nielsen OJ (2017) Int J Chem Kinet 49:10–20CrossRefGoogle Scholar
- 30.Hartman DE (1995) Neuropsychological toxicology: identification and assessment of human neurotoxic syndromes. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
- 31.Zavala-Oseguera C, Alvarez-Idaboy JR, Merino G, Galano A (2009) J Phys Chem A 113(50):13913–13920CrossRefGoogle Scholar
- 32.Zhu J, Wang S, Tsona NT, Jiang X, Wang Y, Ge M, Du L (2017) J Phys Chem A 121(36):6800–6809CrossRefGoogle Scholar
- 33.Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
- 34.Hu WP, Truhlar DG (1996) J Am Chem Soc 118:860–869CrossRefGoogle Scholar
- 35.Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem A 100:12771–12800CrossRefGoogle Scholar
- 36.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand R, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi J, Rega N, Millam JM, Klene M, Knox M, Cross JB, Bakken V, Adamo V, Jaramillo J, Gomperts J, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma RL, Zakrzewski VG, Voth GA, Salvador GA, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 (revision D. 01). Gaussian Inc, WallingfordGoogle Scholar
- 37.Bai FY, Zhu XL, Jia ZM, Wang X, Sun YQ, Wang RS, Pan XM (2015) ChemPhysChem 16:1768–1776CrossRefGoogle Scholar
- 38.Huang M, Wang Z, Hao L, Zhang W (2012) Comput Theor Chem 996:44–50CrossRefGoogle Scholar
- 39.Yin G, Hu E, Yang F, Ku J, Huang Z (2017) Fuel 210:646–658CrossRefGoogle Scholar
- 40.Kaur G, Vikas (2014) J Phys Chem A 118:4019–4029CrossRefGoogle Scholar
- 41.Singh HJ, Gour NK, Rao PK, Tiwari L (2014) J Mol Model 19:4815–4822CrossRefGoogle Scholar
- 42.Gour NK, Gupta S, Mishra BK, Singh HJ (2014) J Chem Sci 1266:1789–1801CrossRefGoogle Scholar
- 43.Gomez MC, Iuga C, Alvarez-Idaboy JR (2012) Int J Quant Chem 112:3508–3515CrossRefGoogle Scholar
- 44.Yu AY (2013) Struct Chem 25:607–610CrossRefGoogle Scholar
- 45.Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson Education, New DelhiGoogle Scholar
- 46.Johnston HS, Heicklen J (1962) J Phys Chem 66:532–533CrossRefGoogle Scholar
- 47.Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, 3rd edn, J Phys Chem Ref Data 14, Suppl 1Google Scholar
- 48.Singleton DL, Cvetanovic RJ (1976) J Am Chem Soc 98:6812–6819CrossRefGoogle Scholar
- 49.Lide DR (2009) CRC Handbook of chemistry and physics, 89th edn. CRC Press, New YorkGoogle Scholar
- 50.Kurylo MJ, Orkin VL (2003) Chem Rev 103:5049–5076CrossRefGoogle Scholar
- 51.Wingenter OW, Kubo MK, Blake NJ, Smith TW, Blake DR, Rowland FS (1996) J Geophys Res 101:4331–4340CrossRefGoogle Scholar