Energy conversion process of substituted phthalocyanines with potential application to DSSC: a theoretical study

  • Cristian Linares-Flores
  • Eduardo Schott
  • Francisca Claveria-Cadiz
  • Ximena Zarate
Regular Article


A series of zinc phthalocyanine dyes with different electron-donating substituents and four types of anchor groups (described in the paper as A1, A2, A3 and A4) that interact with a semiconductor (TiO2) cluster were studied employing DFT and TD-DFT methodologies with the B3LYP hybrid functional and its long-range corrected version (CAM-B3LYP). We analyzed the range visible and near UV regions; they are the most important regions for photon to current conversion, to obtain the microscopic information about the electronic transitions and its corresponding molecular orbitals (MOs) properties. The computations provided the character of transitions involved in the studied systems. The UV–Vis spectra of the isolated dyes were obtained and compared with the computed spectra of the dyes anchored to the (TiO2)15 cluster. Furthermore, we focus on four properties that can be optimized: \(\Delta G_{\text{inj}}^{0}\), LHE, \(\Delta G_{\text{rec}}^{0}\) and τ. The results obtained in this work allow us to propose the A2 as adequate anchor when –N(CH3)2 is the substituent R. That is of potential interest for designing highly efficient dye-sensitized solar cells.


Phthalocyanine DSSC DFT TD-DFT Sensitizers 



The authors thank the Fondecyt Grants 11140563, 3150438, 1161416, 1171118, 1180565, REDES 150042 and CONICYT + PAI/ CONVOCATORIA NACIONAL SUBVENCION A LA INSTALACION ACADEMICA, CONVOCATORIA 2017 + PAI77170033.

Supplementary material

214_2018_2229_MOESM1_ESM.pdf (4.6 mb)
Supplementary material 1 (PDF 4683 kb)


  1. 1.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  2. 2.
    Fan W, Tan D, Deng WQ (2012) Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study. ChemPhysChem 13:2051–2060CrossRefGoogle Scholar
  3. 3.
    O´Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 53:737–740CrossRefGoogle Scholar
  4. 4.
    Li L-L, Wei-Guang Diau E (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304CrossRefGoogle Scholar
  5. 5.
    Oviedo MB, Zarate X, Negre CFA, Schott E, Arratia-Perez R, Sánchez CG (2012) Quantum dynamical simulations as a tool for predicting photoinjection mechanisms in dye-sensitized TiO2 solar cells. J Phys Chem Lett 3:2548–2555CrossRefGoogle Scholar
  6. 6.
    Zarate X, Schott-Verdugo S, Rodriguez-Serrano A, Schott E (2016) The nature of the donor motif in acceptor-bridge-donor dyes as an influence in the electron photo-injection mechanism in DSSCs. J Phys Chem A 120(9):1613–1624CrossRefGoogle Scholar
  7. 7.
    Zarate X, Claveria-Cadiz F, Arias-Olivares D, Rodriguez-Serrano A, Inostroza N (2016) Schott, effects of the acceptor unit in dyes with acceptor-bridge-donor architecture in the electron photo-injection mechanism and aggregation in DSSCs. E Phys Chem Chem Phys 18(35):24239–24251CrossRefGoogle Scholar
  8. 8.
    Gómez T, Jaramillo F, Schott E, Arratia-Pérez R, Zarate X (2017) Sol Energy 142:215–223CrossRefGoogle Scholar
  9. 9.
    Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  10. 10.
    Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S (2005) J Phys Chem B 109:3480–3487CrossRefGoogle Scholar
  11. 11.
    Linares-Flores C, Mendizabal F, Arratia-Pérez R, Inostroza N, Orellana C (2015) Substituents role in zinc phthalocyanine derivatives used as dye-sensitized solar cells. A theoretical study using density functional theory. Chem Phys Lett 639:172–177CrossRefGoogle Scholar
  12. 12.
    Cahen D, Hodes G, Gratzel M, Guillemoles JF, Riess I (2000) Nature of photovoltaic action in dye-sensitized solar cells. J Phys Chem B 104:2053–2059CrossRefGoogle Scholar
  13. 13.
    Hagfeldt A, Gratzel M (1995) Light-Induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68CrossRefGoogle Scholar
  14. 14.
    Kay A, Grätzel M (1993) Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 97(23):6272–6277CrossRefGoogle Scholar
  15. 15.
    Kay A, Humphry-Baker R, Grätzel M (1994) Artificial photosynthesis. 2. Investigations on the mechanism of photosensitization of nanocrystalline TiO2 solar cells by chlorophyll derivatives. J Phys Chem 98(3):952–959CrossRefGoogle Scholar
  16. 16.
    Karthikeyan S, Lee JY (2013) Zinc-porphyrin based dyes for dye-sensitized solar cells. J Phys Chem A 117:10973–10979CrossRefGoogle Scholar
  17. 17.
    Urbani M, Grätzel M, Nazeeruddin MK, Torres T (2014) Meso-substituted porphyrins for dye-sensitized solar cells. Chem Rev 114(24):12330–12396CrossRefGoogle Scholar
  18. 18.
    Syu Y-K, Tingare Y, Lin S-Y, Yeh C-Y, Wu J-J (1025) Porphyrin dye-sensitized zinc oxide aggregated anodes for use in solar cells. Molecules 2016(21):1–9Google Scholar
  19. 19.
    Mai C-L, Moehl T, Hsieh C-H, Décoppet J-D, Zakeeruddin SM, Grätzel M, Yeh C-Y (2015) Porphyrin sensitizers bearing a pyridine-type anchoring group for dye-sensitized solar cells. ACS Appl Mater Interfaces 7(27):14975–14982CrossRefGoogle Scholar
  20. 20.
    Guo J-J, Meng J-F, Niu J, Yin Y, Han MM, Ma XH, Song GS, Zhang F (2016) A novel asymmetric phthalocyanine-based hole transporting material for perovskite solar cells with an open-circuit voltage above 1.0 V. Synth Met 220:462–468CrossRefGoogle Scholar
  21. 21.
    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247CrossRefGoogle Scholar
  22. 22.
    Gouterman M, Wagnière GH, Snyder LC (1963) Spectra of porphyrins: part II. Four orbital model. J Mol Spectrosc 11:108–127CrossRefGoogle Scholar
  23. 23.
    Nyokong G, Zbigniew G, Stillman MJ (1987) Phthalocyanine.pi.-cation-radical species: photochemical and electrochemical preparation of ZnPc(-1). + in solution. Inorg Chem 26:548–553CrossRefGoogle Scholar
  24. 24.
    Silva M, Calvete MJF, Goncalves NPF, Burrows HD, Sarakha M, Fernandes A, Ribeiro MF, Azenha ME, Pereira MM (2012) Zinc (II) phthalocyanines inmobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides. J Hazard Mater 233:79–88CrossRefGoogle Scholar
  25. 25.
    Chaitanya K, Ju X-H, Heron BM (2014) Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv 4:26621–26634CrossRefGoogle Scholar
  26. 26.
    Gomez T, Zarate X, Schott E, Arratia-Perez R (2014) Role of the main adsorption modes in the interaction of the dye [COOH–TPP-Zn(II)] on a periodic TiO2 slab exposing a rutile (110) surface in a dye-sentized solar cell. RSC Adv 4:9639–9646CrossRefGoogle Scholar
  27. 27.
    Zarate X, Schott E, Arratia-Pérez R (2013) Effects of the peripheral substituents (–NH2, –OH, –CH3, –H, –C6H5, –Cl, –CO2H and –NO2) on molecular properties of a Ni-porphyrazine dimers family. Polyhedron 50(1):131–138CrossRefGoogle Scholar
  28. 28.
    Zarate X, Schott E, Gomez T, Arratia-Pérez R (2013) A theoretical study of sensitizer candidates for dye-sensitized solar cells: peripheral substituted Di-Zn-pyrazinoporphyrazine-phthalocyanine complexes. J Phys Chem A 117(2):430–438CrossRefGoogle Scholar
  29. 29.
    Zarate X, Schott E, Arratia-Pérez R (2011) A DFT/TD-DFT study of porphyrazines and phthalocyanine oxo-titanium derivatives as potential dyes in solar cells. Int J Quantum Chem 111(15):4186–4196CrossRefGoogle Scholar
  30. 30.
    Lundqvist MJ, Nilsing M, Lunell E, Åkermark B, Persson P (2006) Spacer and anchor effects on the electronic coupling in ruthenium-bis-terpyridine dye-sensitized TiO2 nanocrystals studied by DFT. J Phys Chem B 110(41):20513–20525CrossRefGoogle Scholar
  31. 31.
    Ernstorfer R, Gundlach L, Felber S, Storck W, Eichberger R, Willig F (2006) Role of molecular anchor groups in molecule-to-semiconductor electron transfer. J Phys Chem B 110(50):25383–25391CrossRefGoogle Scholar
  32. 32.
    Zanotti G, Angelini N, Mattioli G, Notarantonio S, Paoletti AM, Pennesi G, Rossi G, Caschera D, De Marco L, Gigli G (2016) Modifications of an unsymmetrical phthalocyanine: towards stable blue dyes for dye-sensitized solar Cells. J Porphyr Phthalocyanines 20:1–10CrossRefGoogle Scholar
  33. 33.
    Zhang X-F, Li X, Niu L, Sun L, Liu L (2009) Charge transfer photophysics of tetra (α-amino) zinc phthalocyanine. J Fluoresc 19:947–954CrossRefGoogle Scholar
  34. 34.
    Martsinovich N, Troisi A (2011) Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes. Energy Environ Sci 4:4473–4495CrossRefGoogle Scholar
  35. 35.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  36. 36.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  38. 38.
    Mendizabal F, Lopéz A, Arratia-Pérez R, Inostroza N, Linares-Flores C (2015) Interaction of YD2 and TiO2 in dye-sensitized solar cells(DSSCs): a density functional theory study. J Mol Model 21:226–235CrossRefGoogle Scholar
  39. 39.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 1–3:51–57CrossRefGoogle Scholar
  40. 40.
    Gomez T, Jaramillo F, Schott E, Arratia-Pérez R, Zarate X (2017) Simulation of natural dyes adsorbed on TiO2 for photovoltaic applications, Research article. Solar Energy 142:215–223CrossRefGoogle Scholar
  41. 41.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310CrossRefGoogle Scholar
  42. 42.
    Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298CrossRefGoogle Scholar
  43. 43.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984CrossRefGoogle Scholar
  44. 44.
    Hamad S, Catlow CRA, Woodley SM, Lago S, Mejías JA (2005) Structure and stability of small TiO2 nanoparticles. J Phys Chem B 109:15741–15748CrossRefGoogle Scholar
  45. 45.
    Marcus A (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–610CrossRefGoogle Scholar
  46. 46.
    Ma W, Jiao Y, Meng S (2014) Femtosecond transient absorption of zinc porphyrins with oligo(phenylethylnyl) linkers in solution and on TiO2 films. J Phys Chem C 118:16447–16457CrossRefGoogle Scholar
  47. 47.
    Sánchez de Armas R, Oviedo J, San Miguel MA, Sanz JF (2011) Direct vs indirect mechanisms for electron injection in dye-sensitized solar cells. J Phys Chem C 115:11293–11301CrossRefGoogle Scholar
  48. 48.
    Sánchez de Armas R, San Miguel MA, Oviedo J, Marquez A, Sanz JF (2011) Electronic structure and optical spectra of catechol on TiO2 nanoparticles from real time TD-DFT simulations. Phys Chem Chem Phys 13:1506–1514CrossRefGoogle Scholar
  49. 49.
    Lundqvist MJ, Nilsing M, Persson P, Lunell S (2006) DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals. Int J Quantum Chem 106:3214–3234CrossRefGoogle Scholar
  50. 50.
    Asghar MI, Halme J, Kaukonen S, Humalamäki N, Lund P, Korppi-Tommola J (2016) Intriguing photochemistry of the additives in the dye-sensitized. Solar Cells 120:27768–27781Google Scholar
  51. 51.
    Schiffmann F, VandeVondele J, Hutter J, Urakawa A, Wirz R, Baiker A (2010) An atomistic picture of the regeneration process in dye sensitized solar cells. Proc Natl Acad Sci 107:114830–114833CrossRefGoogle Scholar
  52. 52.
    Mao J, Zhang X, Liu S-H, Shen Z, Li X, Wua W, Chou P-T, Hua J (2015) Molecular engineering of D-A-p-A dyes with 2-(1,1- dicyanomethylene) rhodanine as an electron-accepting and anchoring group for dye-sensitized solar cells. Electrochim Acta 179:179–186CrossRefGoogle Scholar
  53. 53.
    De Angelis F, Fantacci S, Selloni A, Grätzel M, Nazeeruddin MK (2007) Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett 7:3189–3195CrossRefGoogle Scholar
  54. 54.
    Dette C, Pérez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, Giustino F, Jung SJ, Kern K (2014) TiO2 anatase with a bandgap in the visible region. Nano Lett 14:6533–6538CrossRefGoogle Scholar
  55. 55.
    Mosconi E, Yum JH, Kessler F, Gómez García CJ, Zuccaccia C, Cinti A, Nazeeruddin MK, Grätzel M, De Angelis F (2012) Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. J Am Chem Soc 134(47):19438–19453CrossRefGoogle Scholar
  56. 56.
    Tortorella S, Mastropasqua Talamo M, Cardone A, Pastore M, De Angelis F (2016) Benchmarking DFT and semi-empirical methods for a reliable and cost-efficient computational screening of benzofulvene derivatives as donor materials for small-molecule organic solar cells. J Phys Condens Matter 28:074005 (11 pp) CrossRefGoogle Scholar
  57. 57.
    Bai Y, Mora-Seró I, De Angelis F, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114(19):10095CrossRefGoogle Scholar
  58. 58.
    Weston M, Reade TJ, Handrup K, Champness NR, O’Shea JN (2012) Adsorption of dipyrrin-based dye complexes on a rutile TiO2(110) surface. J Phys Chem C 116(34):18184–18192CrossRefGoogle Scholar
  59. 59.
    Persson P, Lundqvist MJ (2005) Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal. J Phys Chem B 109:11918CrossRefGoogle Scholar
  60. 60.
    Feng J, Jiao Y, Ma W, Nazeeruddin MK, Gratzel M, Meng S (2013) First principles design of dye molecules with ullazine donor for dye sensitized solar cells. J Phys Chem C 117:3772–3778CrossRefGoogle Scholar
  61. 61.
    Manzhos S, Segawa H, Yamashita K (2012) Computational dye design by changing the conjugation order: failure of LR-TDDFT to predict relative excitation energies in organic dyes differing by the positions of the methine unit. Chem Phys Lett 527:51–56CrossRefGoogle Scholar
  62. 62.
    Mack J, Wildervanck M, Nyokong T (2014) TD-DFT calculations and MCD spectroscopy of porphyrin and phthalocyanine analogues: rational design of photosensitizers for PDT and NIR region sensor applications. Turk J Chem 38:1013–1026CrossRefGoogle Scholar
  63. 63.
    Asbury JB, Wang Y-Q, Hao E, Ghosh HN, Lian T (2001) Res Chem Intermed 27:393–406CrossRefGoogle Scholar
  64. 64.
    Liu S, Fu H, Cheng Y, Wu K, Ho S, Chi Y, Chou P (2012) Theoretical study of N749 dyes anchoring on the (TiO2)28 surface in DSSCs and their electronic absorption properties. J Phys Chem C 116:16338CrossRefGoogle Scholar
  65. 65.
    Duncan WR, Prezhdo OV (2007) Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu Rev Phys Chem 58:143–184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Materials CenterUniversidad Autónoma de ChileSan Miguel, SantiagoChile
  2. 2.Departamento de Química Inorgánica, Facultad de QuímicaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations