Skip to main content
Log in

Modeling magnetic circular dichroism within the polarizable embedding approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Magnetic circular dichroism (MCD) is defined as the differential absorption of left and right circularly polarized light in a sample subjected to an external magnetic field. In order to interpret the results of MCD measurements, theoretical predictions of key MCD parameters can be of utmost importance. From an experimental point of view, MCD spectra of molecules are often measured in an environment and most notably in a solution. Thus, it may be very important that the method used to predict the MCD parameters is able to correctly account for medium effects. In this paper, we investigate the quality of MCD calculations within the polarizable embedding approach, which represents a fully atomistic and polarizable representation of an environment surrounding a smaller region treated using quantum mechanics. Furthermore, we compare the performance of the polarizable embedding scheme to the use of the more conventional dielectric continuum approach. Results are presented for cytosine and hypoxanthine solvated in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barron LD (2004) Molecular light scattering and optical activity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Mason WR (2007) A practical guide to magnetic circular dichroism. Wiley, New York

    Book  Google Scholar 

  3. Caldwell DJ, Eyring H (1971) The theory of optical activity. Wiley-Interscience, New York

    Google Scholar 

  4. Buckingham A, Stephens P (1966) Annu Rev Phys Chem 17(1):399

    Article  CAS  Google Scholar 

  5. Schatz P, McCaffery A (1969) Quart Rev Chem Soc 23(4):552

    Article  CAS  Google Scholar 

  6. Serber R (1932) Phys Rev 41(4):489

    Article  CAS  Google Scholar 

  7. Stephens P (1968) Chem Phys Lett 2(4):241

    Article  CAS  Google Scholar 

  8. Stephens P (1970) J Chem Phys 52(7):3489

    Article  CAS  Google Scholar 

  9. Stephens P (1974) Annu Rev Phys Chem 25(1):201

    Article  CAS  Google Scholar 

  10. Stephens P (1976) Adv Chem Phys 35:197

    CAS  Google Scholar 

  11. Coriani S, Jørgensen P, Rizzo A, Ruud K, Olsen J (1999) Chem Phys Lett 300(1):61

    Article  CAS  Google Scholar 

  12. Coriani S, Hättig C, Jørgensen P, Helgaker T (2000) J Chem Phys 113(9):3561

    Article  CAS  Google Scholar 

  13. Kjærgaard T, Jansík B, Jørgensen P, Coriani S, Michl J (2007) J Phys Chem A 111(44):11278

    Article  Google Scholar 

  14. Seth M, Ziegler T, Banerjee A, Autschbach J, van Gisbergen SJ, Baerends EJ (2004) J Chem Phys 120(23):10942

    Article  CAS  Google Scholar 

  15. Seth M, Ziegler T, Autschbach J (2005) J Chem Phys 122(9):094112

    Article  Google Scholar 

  16. Seth M, Autschbach J, Ziegler T (2007) J Chem Theory Comput 3(2):434

    Article  CAS  Google Scholar 

  17. Seth M, Ziegler T (2010) Adv Inorg Chem 62:41

    Article  CAS  Google Scholar 

  18. Solheim H, Frediani L, Ruud K, Coriani S (2008) Theor Chim Acta 119(1):231

    Article  CAS  Google Scholar 

  19. Seth M, Krykunov M, Ziegler T, Autschbach J, Banerjee A (2008) J Chem Phys 128(14):144105

    Article  Google Scholar 

  20. Seth M, Krykunov M, Ziegler T, Autschbach J (2008) J Chem Phys 128(23):234102

    Article  Google Scholar 

  21. Kjærgaard T, Jørgensen P, Thorvaldsen AJ, Sałek P, Coriani S (2009) J Chem Theory Comput 5(8):1997

    Article  Google Scholar 

  22. Kjærgaard T, Kristensen K, Kauczor J, Jørgensen P, Coriani S, Thorvaldsen AJ (2011) J Chem Phys 135(2):024112

    Article  Google Scholar 

  23. Kjærgaard T, Coriani S, Ruud K (2012) Wiley Interdiscip Rev Comput Mol Sci 2(3):443

    Article  Google Scholar 

  24. Norman P, Bishop DM, Jørgen H, Jensen Aa, Oddershede J (2001) J Chem Phys 115(22):10323

    Article  CAS  Google Scholar 

  25. Norman P, Bishop DM, Jensen HJA, Oddershede J (2005) J Chem Phys 123(19):194103

    Article  Google Scholar 

  26. Solheim H, Ruud K, Coriani S, Norman P (2008) J Chem Phys 128:094103

    Article  Google Scholar 

  27. Solheim H, Ruud K, Coriani S, Norman P (2008) J Phys Chem A 112(40):9615

    Article  CAS  Google Scholar 

  28. Fahleson T, Kauczor J, Norman P, Coriani S (2013) Mol Phys 111(9–11):1401

    Article  CAS  Google Scholar 

  29. Fahleson T, Kauczor J, Norman P, Santoro F, Improta R, Coriani S (2015) J Phys Chem A 119(21):5476

    Article  CAS  Google Scholar 

  30. Krykunov M, Seth M, Ziegler T, Autschbach J (2007) J Chem Phys 127(24):244102

    Article  Google Scholar 

  31. Santoro F, Improta R, Fahleson T, Kauczor J, Norman P, Coriani S (2014) Phys Chem Lett 5(11):1806

    Article  CAS  Google Scholar 

  32. Martinez-Fernandez L, Fahleson T, Norman P, Santoro F, Coriani S, Improta R (2017) Photochem Photobiol Sci 16:1415–1423

    Article  CAS  Google Scholar 

  33. Isborn CM, Mar BD, Curchod BF, Tavernelli I, Martinez TJ (2013) J Phys Chem B 117(40):12189

    Article  CAS  Google Scholar 

  34. Milanese JM, Provorse MR, Alameda E Jr, Isborn CM (2017) J Chem Theory Comput 13(5):2159–2171

    Article  CAS  Google Scholar 

  35. Flaig D, Beer M, Ochsenfeld C (2012) J Chem Theory Comput 8(7):2260

    Article  CAS  Google Scholar 

  36. Nørby MS, Olsen JMH, Steinmann C, Kongsted J (2017) J Chem Theory Comput 13(9):4442–4451

    Article  Google Scholar 

  37. Warshel A, Levitt M (1976) J Mol Biol 103(2):227

    Article  CAS  Google Scholar 

  38. Olsen JM, Aidas K, Kongsted J (2010) J Chem Theory Comput 6(12):3721

    Article  CAS  Google Scholar 

  39. Olsen JMH, Kongsted J (2011) Adv Quantum Chem 61:107

    Article  CAS  Google Scholar 

  40. Pedersen MN, Hedegård ED, Olsen JMH, Kauczor J, Norman P, Kongsted J (2014) J Chem Theory Comput 10(3):1164

    Article  CAS  Google Scholar 

  41. Lipparini F, Cappelli C, Barone V (2013) J Chem Phys 138(23):234108

    Article  Google Scholar 

  42. Giovannini T, Olszowka M, Egidi F, Cheeseman JR, Scalmani G, Cappelli C (2017) J Chem Theory Comput 13(9):4421

    Article  CAS  Google Scholar 

  43. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) J Chem Phys 105(5):1968

    Article  CAS  Google Scholar 

  44. Gordon MS, Freitag MA, Bandyopadhyay P, Jensen JH, Kairys V, Stevens WJ (2001) J Phys Chem A 105(2):293

    Article  CAS  Google Scholar 

  45. Soderhjelm P, Husberg C, Strambi A, Olivucci M, Ryde U (2009) J Chem Theory Comput 5(3):649

    Article  CAS  Google Scholar 

  46. Gordon MS, Smith QA, Xu P, Slipchenko LV (2013) Annu Rev Phys Chem 64:553

    Article  CAS  Google Scholar 

  47. Singh UC, Kollman PA (1986) J Comput Chem 7(6):718

    Article  CAS  Google Scholar 

  48. Thompson MA, Schenter GK (1995) J Phys Chem 99(17):6374

    Article  CAS  Google Scholar 

  49. Thompson MA (1996) J Phys Chem 100(34):14492

    Article  CAS  Google Scholar 

  50. Bakowies D, Thiel W (1996) J Phys Chem 100(25):10580

    Article  CAS  Google Scholar 

  51. Bryce RA, Buesnel R, Hillier IH, Burton NA (1997) Chem Phys Lett 279(5–6):367

    Article  CAS  Google Scholar 

  52. Jensen L, van Duijnen PT, Snijders JG (2003) J Chem Phys 118(2):514

    Article  CAS  Google Scholar 

  53. Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2003) J Phys Chem A 107(14):2578

    Article  CAS  Google Scholar 

  54. Illingworth CJ, Gooding SR, Winn PJ, Jones GA, Ferenczy GG, Reynolds CA (2006) J Phys Chem A 110(20):6487

    Article  CAS  Google Scholar 

  55. Nielsen CB, Christiansen O, Mikkelsen KV, Kongsted J (2007) J Chem Phys 126(15):154112

    Article  Google Scholar 

  56. Geerke DP, Thiel S, Thiel W, van Gunsteren WF (2007) J Chem Theory Comput 3(4):1499

    Article  CAS  Google Scholar 

  57. Curutchet C, Muñoz-Losa A, Monti S, Kongsted J, Scholes GD, Mennucci B (2009) J Chem Theory Comput 5(7):1838

    Article  CAS  Google Scholar 

  58. Lipparini F, Barone V (2011) J Chem Theory Comput 7(11):3711

    Article  CAS  Google Scholar 

  59. Lipparini F, Cappelli C, Barone V (2012) J Chem Theory Comput 8(11):4153

    Article  CAS  Google Scholar 

  60. Boulanger E, Thiel W (2012) J Chem Theory Comput 8(11):4527

    Article  CAS  Google Scholar 

  61. Steinmann C, Olsen JMH, Kongsted J (2014) J Chem Theory Comput 10(3):981

    Article  CAS  Google Scholar 

  62. Schwabe T, Beerepoot MT, Olsen JMH, Kongsted J (2014) Phys Chem Chem Phys 17(4):2582

    Article  Google Scholar 

  63. Voelter W, Records R, Bunnenberg E, Djerassi C (1968) J Am Chem Soc 90(22):6163

    Article  CAS  Google Scholar 

  64. Sutherland JC, Holmquist B (1980) Annu Rev Biophys Bioeng 9(1):293

    Article  CAS  Google Scholar 

  65. Sutherland JC, Griffin K (1984) Biopolymers 23(12):2715

    Article  CAS  Google Scholar 

  66. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105(8):2999

    Article  CAS  Google Scholar 

  67. List NH, Jensen HJA, Kongsted J (2016) Phys Chem Chem Phys 18(15):10070

    Article  CAS  Google Scholar 

  68. Nåbo LJ, List NH, Steinmann C, Kongsted J (2017) J Chem Theory Comput 13(2):719

    Article  Google Scholar 

  69. Thellamurege NM, Li H (2012) J Chem Phys 137(24):246101

    Article  Google Scholar 

  70. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2(5):799

    Article  Google Scholar 

  71. Stefanovich EV, Truong TN (1995) Chem Phys Lett 244(1):65

    Article  CAS  Google Scholar 

  72. Truong TN, Stefanovich EV (1995) Chem Phys Lett 240(4):253

    Article  CAS  Google Scholar 

  73. Barone V, Cossi M (1998) J Phys Chem A 102(11):1995

    Article  CAS  Google Scholar 

  74. Klamt A (1995) J Phys Chem 99(7):2224

    Article  CAS  Google Scholar 

  75. Kauczor J, Jørgensen P, Norman P (2011) J Chem Theory Comput 7(6):1610

    Article  CAS  Google Scholar 

  76. Kauczor J, Norman P (2014) J Chem Theory Comput 10(6):2449

    Article  CAS  Google Scholar 

  77. Olsen J, Jørgensen P (1985) J Chem Phys 82(7):3235

    Article  CAS  Google Scholar 

  78. Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenaes E, Høst S, Høyvik IM, Iozzi MF, Jansík B, Jensen HJA, Jonsson D, Jørgensen P, Kauczor J, Kirpekar S, Kjaergaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnaes OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Sałek P, Samson CCM, de Merás AS, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thøgersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Ågren H (2013) Wiley Interdiscip Rev Comput Mol Sci 4(3):269

    Article  Google Scholar 

  79. Olsen JMH (2014) PElib: the Polarizable Embedding library (development version). https://gitlab.com/pe-software/pelib-public

  80. Gao B (2014) Gen1Int version 0.3.0. http://repo.ctcc.no/projects/gen1int

  81. Gao B, Thorvaldsen AJ, Ruud K (2010) Int J Quantum Chem 111(4):858

    Article  Google Scholar 

  82. Becke AD (1993) J Chem Phys 98(7):5648

    Article  CAS  Google Scholar 

  83. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200

    Article  CAS  Google Scholar 

  84. Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  85. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas V, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  86. Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016, University of California, San Francisco

  87. Korth M (2010) J Chem Theory Comput 6(12):3808

    Article  CAS  Google Scholar 

  88. Jorgensen WL (1981) J Am Chem Soc 103(2):335

    Article  CAS  Google Scholar 

  89. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  90. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393(1):51

    Article  CAS  Google Scholar 

  91. Dunning TH (1989) J Chem Phys 90(2):1007

    Article  CAS  Google Scholar 

  92. Gagliardi L, Lindh R, Karlström G (2004) J Chem Phys 121(10):4494

    Article  CAS  Google Scholar 

  93. Vahtras O (2014) Loprop for dalton. https://doi.org/10.5281/zenodo.13276

    Google Scholar 

  94. Kaito A, Hatano M, Ueda T, Shibuya S (1980) Bull Chem Soc Jpn 53(11):3073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Antonio Rizzo on the occasion of his 60 years birthday. We would all like to thank Antonio for his significant scientific contributions and for being an extremely kind person. Computational resources were provided by the DeIC National HPC Center at the University of Southern Denmark through an Abacus 2.0 grant. J. K. thanks the Danish Council for Independent Research and the Villum Foundation for financial support. S. C. acknowledges support from DTU Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Steen Nørby.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Rizzo”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 149 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nørby, M.S., Coriani, S. & Kongsted, J. Modeling magnetic circular dichroism within the polarizable embedding approach. Theor Chem Acc 137, 49 (2018). https://doi.org/10.1007/s00214-018-2220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2220-5

Keywords

Navigation