On the performance of multi-state transition filtering in mixed quantum-classical Liouville surface-hopping simulations: beyond two- and three-state quantum subsystems

Regular Article


In two recent studies [(i) Dell’Angelo, D.; Hanna, G. J. Chem. Theory Comput., 2016, 12: 477 and (ii) Dell’Angelo, D.; Hanna, G. AIP Conf. Proc., 2016, 1790: 020009], we developed a transition filtering approach for reducing the number of trajectories required in mixed quantum-classical Liouville surface-hopping calculations of time-dependent expectation values. This approach was successfully applied to two relatively simple systems (viz., two quantum states coupled to twenty classical degrees of freedom (DOF) and three quantum states coupled to one classical DOF), yielding substantial reductions in the number of trajectories required for converged results. However, because the number of trajectories scales with the number of states in the quantum subsystem, it is not obvious how well this scheme would work for subsystems with larger numbers of states. Therefore, in this work, we examine the feasibility and efficacy of our transition filtering scheme for computing quantum state populations in a model of an alpha-helical polypeptide containing six quantum and six classical DOF. For this model, we find that it is possible to obtain accurate, numerically stable results with more than one order of magnitude fewer trajectories than the number of trajectories used to generate the results without any filtering. This level of performance is consistent with that observed in our previous applications to systems of lower complexity, pointing to the applicability of this scheme to systems with an arbitrary number of quantum states.


Mixed quantum-classical dynamics Surface-hopping dynamics Monte Carlo sampling Energy transfer 



This work was supported by a Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. 1.
    Tully JC (1990) J Chem Phys 93:1061CrossRefGoogle Scholar
  2. 2.
    Schwartz BJ, Bittner ER, Prezhdo OV, Rossky PJ (1996) J Chem Phys 104:5942CrossRefGoogle Scholar
  3. 3.
    Kapral R, Ciccotti G (1999) J Chem Phys 110:8919CrossRefGoogle Scholar
  4. 4.
    Bedard-Hearn MJ, Larsen RE, Schwartz BJ (2005) J Chem Phys 123:234106CrossRefGoogle Scholar
  5. 5.
    Landry BR, Subotnik JE (2012) J Chem Phys 137:22A513CrossRefGoogle Scholar
  6. 6.
    Jaeger HM, Fischer S, Prezhdo OV (2012) J Chem Phys 137:22A545CrossRefGoogle Scholar
  7. 7.
    Wang L, Trivedi D, Prezhdo OV (2014) J Chem Theory Comput 10:3598CrossRefGoogle Scholar
  8. 8.
    Wang L, Prezhdo OV (2014) J Phys Chem Lett 5:713CrossRefGoogle Scholar
  9. 9.
    Ouyang W, Dou W, Subotnik JE (2015) J Chem Phys 142:084109CrossRefGoogle Scholar
  10. 10.
    Wang L, Sifain AE, Prezhdo OV (2015) J Phys Chem Lett 6:3827CrossRefGoogle Scholar
  11. 11.
    Wang L, Akimov A, Prezhdo OV (2016) J Phys Chem Lett 7:2100CrossRefGoogle Scholar
  12. 12.
    Min SK, Agostini F, Tavernelli I, Gross EKU (2017) J Phys Chem Lett 8:3048CrossRefGoogle Scholar
  13. 13.
    Agostini F, Min SK, Abedi A, Gross EKU (2016) J Chem Theory Comput 12:2127CrossRefGoogle Scholar
  14. 14.
    Aleksandrov IV (1981) Z Naturforsch 36:902Google Scholar
  15. 15.
    Gerasimenko VI (1982) Theor Math Phys 50:77CrossRefGoogle Scholar
  16. 16.
    Zhang Z-Q, Chu Q-J (1988) Phys Lett A 131:517CrossRefGoogle Scholar
  17. 17.
    MacKernan D, Kapral R, Ciccotti G (2002) J Phys Condens Matter 14:9069CrossRefGoogle Scholar
  18. 18.
    MacKernan D, Ciccotti G, Kapral R (2008) J Phys Chem B 112:424CrossRefGoogle Scholar
  19. 19.
    Sergi A, MacKernan D, Ciccotti G, Kapral R (2003) Theor Chem Acc 110:49CrossRefGoogle Scholar
  20. 20.
    Hanna G, Kapral R (2005) J Chem Phys 122:244505CrossRefGoogle Scholar
  21. 21.
    Uken DA, Sergi A, Petruccione F (2011) Phys Scr T143:014024CrossRefGoogle Scholar
  22. 22.
    Sergi A, Petruccione F (2010) Phys Rev E 81:032101CrossRefGoogle Scholar
  23. 23.
    Uken DA, Sergi A, Petruccione F (2013) Phys Rev E 88:033301CrossRefGoogle Scholar
  24. 24.
    Dell’Angelo D, Hanna G (2016) J Chem Theory Comput 12:477CrossRefGoogle Scholar
  25. 25.
    Dell’Angelo D, Hanna G (2016) AIP Conf Proc, 1790:020009(1)Google Scholar
  26. 26.
    Wigner E (1932) Phys Rev 40:749CrossRefGoogle Scholar
  27. 27.
    Tsivlin DV, May V (2007) Chem Phys 338:150CrossRefGoogle Scholar
  28. 28.
    Freedman H, Hanna G (2016) Chem Phys 477:74CrossRefGoogle Scholar
  29. 29.
    Dell’Angelo D, Hanna G (2017) Theo Chem Acc 136:75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations