Supercell-zone folding transformation for bulk crystals and nanotubes

  • R. A. Evarestov
  • A. V. Bandura
  • I. I. Tupitsyn
Regular Article
  • 57 Downloads
Part of the following topical collections:
  1. In Memoriam of Claudio Zicovich

Abstract

The analytical relation between k-points in the primitive-cell Brillouin zone and reduced supercell Brillouin zone is reported for supercell-zone-folding transformation. Examples are given for symmetry points of square and cubic simple, face-centered and body-centered lattices. The cyclic cluster symmetry is considered as a particular case of supercell-zone-folding transformation. The results of the first principles calculations of LiCl crystal in the supercell model as well as the symmetry of one-electron states are discussed using the supercell-zone-folding concept. The first principles calculations of copper impurity in LiCl crystal are made using different supercells. The site symmetry method is applied to find the space group representations induced by Cl p-states and copper d-states. The zone-folding transformation for the two-dimensional layer unit cell is considered in relation to the single wall nanotubes modeling. The results of zone-folding method application to electron states of WS2-based nanotubes and to phonon calculations of carbon and ZrS2-based nanotubes are presented and discussed.

Keywords

Symmetry analysis Unit cell transformation Brillouin zone folding Special points Electronic bands Phonon frequencies Thermodynamic functions Cyclic cluster Defective crystals Nanotubes 

Notes

Acknowledgements

Two of us (R.A.E and A.V.B) acknowledge the financial support provided by the Russian Foundation for Basic Research (RFBR) (Grant No. 17-03-00130-a) for calculations on thermodynamic properties of nanotubes. One of us (I.I.T.) acknowledges the financial support of the Ministry of Education and Science of the Russian Federation Project No. 3.1463.2017, for GENKPT computer code development. The authors also acknowledge the assistance of the Computer Center of Saint-Petersburg State University in the accomplishment of high-performance computations.

Supplementary material

214_2017_2190_MOESM1_ESM.pdf (44 kb)
Supplementary material 1 (PDF 44 kb)

References

  1. 1.
    Evarestov RA (2007) Quantum chemistry of solids. The LCAO first principles treatment of crystals. Springer Series in Solid State Sciences 153, Springer, BerlinGoogle Scholar
  2. 2.
    Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco Ph, Noël Y, Causà M, Rérat M, Kirtman B (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quant Chem 114:1287–1317CrossRefGoogle Scholar
  3. 3.
    Crystal Home Page. http://www.rystal.unito.it. Accessed 01 Nov 2017
  4. 4.
    Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco Ph, Llunell M, Causà M, Noël Y, Maschio L, Erba A, Rérat M, Casassa S (2017) CRYSTAL17 User’s Manual. University of Turin, TurinGoogle Scholar
  5. 5.
    Evarestov RA, Petrashen MI, Ledovskaya EM (1976) Comparison of the large unit cell and small periodic cluster approaches to the quasimolecular calculations of the band spectra of crystals. Phys Stat Sol B 76:377–383CrossRefGoogle Scholar
  6. 6.
    Bredow T, Evarestov RA, Jug K (2000) Implementation of the cyclic cluster model in Hartree-Fock LCAO calculations of crystalline systems. Phys Stat Sol B 222:495–516CrossRefGoogle Scholar
  7. 7.
    Evarestov RA, Piskunov S, Kotomin EA, Borstel G (2003) Single impurities in insulators: ab initio study of Fe-doped SrTiO3. Phys Rev B 67:064101CrossRefGoogle Scholar
  8. 8.
    Gryaznov D, Finnis MW, Evarestov RA, Maier J (2014) Oxygen vacancy formation energies in Sr-doped complex perovskites: ab initio thermodynamic study. Solid State Ionics 254:11–16CrossRefGoogle Scholar
  9. 9.
    Evarestov RA (2005) Trends in calculation of point and extended defects in wide-gap solids: periodic models of aperiodic systems. Phys Stat Sol A 202:235–242CrossRefGoogle Scholar
  10. 10.
    Evarestov RA, Kotomin EA, Zhukovskii YF (2006) DFT study of a single F center in cubic SrTiO3 perovskite. Int J Quantum Chem 106:2173–2183CrossRefGoogle Scholar
  11. 11.
    Alexandrov VE, Kotomin EA, Maier J, Evarestov RA (2009) First-principles study of bulk and surface oxygen vacancies in SrTiO3 crystal. Eur Phys J B 72:53–57CrossRefGoogle Scholar
  12. 12.
    Evarestov RA, Platonenko A, Gryaznov D, Zhukovskii YF, Kotomin EA (2017) First-principles calculations of oxygen interstitials in corundum: a site symmetry approach. Phys Chem Chem Phys 19:25245–25251CrossRefGoogle Scholar
  13. 13.
    Evarestov RA, Kitaev YE, Porsev VV (2017) Use of Wyckoff position splittings in the supercell model of crystals with point defects. J Appl Crystallogr 50:893–900CrossRefGoogle Scholar
  14. 14.
    Evarestov RA, Piskunov S, Zhukovskii YF (2017) Site symmetry approach in the supercell model of carbon-doped ZnO bulk. Chem Phys Lett 682:91–95CrossRefGoogle Scholar
  15. 15.
    Gryaznov D, Blokhin E, Sorokine A, Kotomin EA, Evarestov RA, Bussmann-Holder A, Maier J (2013) A comparative ab initio thermodynamic study of oxygen vacancies in ZnO and SrTiO3: emphasis on phonon contribution. J Phys Chem C 117:13776–13784CrossRefGoogle Scholar
  16. 16.
    Evarestov RA, Smirnov VP (1983) Special points of the Brillouin zone and their use in the solid state theory. Phys Stat Sol B 119:9–40CrossRefGoogle Scholar
  17. 17.
    Evarestov RA, Smirnov VP (2004) Modification of the Monkhorst-Pack special points meshes in the Brillouin zone for density functional theory and Hartree-Fock calculations. Phys Rev B 70:233101CrossRefGoogle Scholar
  18. 18.
    Chadi DJ, Cohen ML (1973) Special points in the Brillouin zone. Phys Rev B 8:5747–5753CrossRefGoogle Scholar
  19. 19.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  20. 20.
    Moreno J, Soler JM (1992) Optimal meshes for integrals in real- and reciprocal-space unit cells. Phys Rev B 45:13891–13898CrossRefGoogle Scholar
  21. 21.
    Evarestov RA, Losev MV (2009) All-electron LCAO calculations of the LiF crystal phonon spectrum: influence of the basis set, the exchange-correlation functional, and the supercell size. J Comput Chem 30:2645–2655CrossRefGoogle Scholar
  22. 22.
    Samsonidze GG, Saito R, Jorio A, Pimenta MA, Souza Filho AG, Grüneis A, Dresselhaus G, Dresselhaus MS (2003) The concept of cutting lines in carbon nanotube science. J Nanosci Nanotechnol 3:431–458CrossRefGoogle Scholar
  23. 23.
    Eremin NN, Deyanov RZ, Urusov VS (2008) Choice of the supercell with the optimum atomic configuration in simulation of disordered solid solutions. Glass Phys Chem 34:9–18CrossRefGoogle Scholar
  24. 24.
    Gryaznov D, Merkle R, Kotomin EA, Maier J (2016) Ab initio modelling of oxygen vacancies and protonic defects in La1−xSrxFeO3−δ perovskite solid solutions. J Mater Chem A 4:13093–13104CrossRefGoogle Scholar
  25. 25.
    Bilbao Crystallographic Server. http://www.cryst.ehu.es. Accessed 01 Nov 2017
  26. 26.
    Furuya M, Ishii S, Takahashi Y, Nagasaka S, Yoshinari T, Kawazoe Y, Ohno K (2004) Stability of copper atoms embedded in sodium-chloride crystals. Mater Trans 45:1450–1451CrossRefGoogle Scholar
  27. 27.
    Harrison JG, Lin CC (1981) Self-consistent-field electronic structure of Cu+ impurity states in a LiCl crystal. Phys Rev B 23:3894–3902CrossRefGoogle Scholar
  28. 28.
    Heaton RA, Lin CC (1984) Self-interaction–correction theory for density functional calculations of electronic energy bands for the lithium chloride crystal. J Phys C Solid State Phys 17:1853–1866CrossRefGoogle Scholar
  29. 29.
    Erdinc B, Secuk MN, Aycibin M, Gülebagan SE, Dogan EK, Akkus H (2015) Ab-initio calculations of physical properties of alkali chloride XCl (X = K, Rb and Li) under pressure. Comput Condens Matter 4:6–12CrossRefGoogle Scholar
  30. 30.
    Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:226401CrossRefGoogle Scholar
  31. 31.
    Iwata S, Ishii S, Ohno K (2005) Ab initio all-electron GW calculation of lithium chloride crystal. Mater Trans 46:1100–1102CrossRefGoogle Scholar
  32. 32.
    Mei WN, Boyer LL, Mehl MJ, Ossowski MM, Stokes HT (2000) Calculation of electronic, structural, and vibrational properties in alkali halides using a density-functional method with localized densities. Phys Rev B 61:11425–11431CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Emzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985CrossRefGoogle Scholar
  34. 34.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  35. 35.
    Evarestov RA (2015) Theoretical modeling of inorganic nanostructures. Symmetry and ab initio calculations of nanolayers, nanotubes and nanowires. Springer, BerlinGoogle Scholar
  36. 36.
    Sophia G, Baranek P, Sarrazin C, Rerat M, Dovesi R (2014) Systematic influence of atomic substitution on the phase diagram of ABO3 ferroelectric perovskites. http://www.crystal.unito.it/Basis_Sets. Accessed 01 Nov 2017
  37. 37.
    Ruiz E, Llunell M, Alemany P (2003) Calculation of exchange coupling constants in solid state transition metal compounds using localized atomic orbital basis sets. J Solid State Chem 176:400–411CrossRefGoogle Scholar
  38. 38.
    Aprà E, Causà M, Prencipe M, Dovesi R, Saunders VR (1993) On the structural properties of NaCl. An ab initio study of the B1–B2 phase transition. J Phys Condens Matter 5:2969–2976CrossRefGoogle Scholar
  39. 39.
    Cracknell AP, Davies BL, Miller SC, Love WF (1979) Kronecker product tables. Vol. 1. General introduction and tables of irreducible representations of space groups, vol 1. IFI/Plenum, New YorkGoogle Scholar
  40. 40.
    Heaton RA, Harrison JG, Lin CC (1985) Density-functional theory with self-interaction correction of the electronic energy structure of impurity atoms in insulator crystals. Phys Rev B 31:1077–1089CrossRefGoogle Scholar
  41. 41.
    Moine B, Chermette H, Pedrini C (1986) MSXα calculation of the electronic structure of Cu+ and Ag+ ions in lithium chloride single crystal. J Chem Phys 85:2784–2790CrossRefGoogle Scholar
  42. 42.
    Myasnikova A, Mysovsky A, Paklin A, Shalaev A (2015) Structure and optical properties of copper impurity in LiF and NaF crystals from ab initio calculations. Chem Phys Lett 633:218–222CrossRefGoogle Scholar
  43. 43.
    Evarestov RA, Bandura AV, Porsev VV (2016) Thermodynamic properties of nanotubes: zone-folding approach. Lithuanian J Phys 56:164–172CrossRefGoogle Scholar
  44. 44.
    Bandura AV, Porsev VV, Evarestov RA (2016) Application of zone-folding approach to the first-principles estimation of thermodynamic properties of carbon and ZrS2-based nanotubes. J Comput Chem 37:641–652CrossRefGoogle Scholar
  45. 45.
    Evarestov RA, Bandura AV, Porsev VV, Kovalenko AV (2017) First-principles modeling of hafnia-based nanotubes. J Comput Chem 38:2088–2099CrossRefGoogle Scholar
  46. 46.
    Evarestov RA, Bandura AV, Porsev VV, Kovalenko AV (2017) Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes. J Comput Chem 38:2581–2593CrossRefGoogle Scholar
  47. 47.
    Damnjanović M, Milošević I (2010) Line groups in physics: theory and applications to nanotubes and polymers. Springer, BerlinCrossRefGoogle Scholar
  48. 48.
    Wallace DC (1998) Thermodynamics of crystals. Dover, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussian Federation
  2. 2.Center for Advanced StudiesPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussian Federation

Personalised recommendations