Skip to main content
Log in

Semi-segmented contraction of generally contracted basis sets by property minimization

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A method is presented for reducing the number of primitives in a generally contracted basis set, to improve the efficiency of integral evaluation in a program that is designed for segmented contractions. The method involves a linear transformation of the generally contracted functions to minimize the value of a property that is evaluated over a subset of the primitives in the general contraction. The transformed orbital is truncated by removing the subset of primitives, and a cutoff on the property is used to determine the size of the subset. For the example of Pb in a double-zeta basis contracted for ZORA calculations, a reduction in the number of primitives of a factor of 2 in the s and p spaces and 1.3 in the d space was obtained with an error of 10 microhartrees in the total energy. The method is also compared with the P-orthogonalization method of Jensen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This number must be multiplied by \(2\ell +1\) to obtain the number of spherical primitives or by \((\ell +1)(\ell +2)/2\) to obtain the number of Cartesian primitives used in a molecular calculation: Here only the radial functions are considered.

References

  1. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939

    Article  CAS  Google Scholar 

  2. Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1983) J Am Chem Soc 104:2797

    Article  Google Scholar 

  3. Pietro WJ, Francl MM, Hehre WJ, DeFrees DJ, Pople JA, Binkley JS (1982) J Am Chem Soc 104:5039

    Article  CAS  Google Scholar 

  4. Dobbs KD, Hehre WJ (1986) J Comput Chem 7:359

    Article  CAS  Google Scholar 

  5. Dobbs KD, Hehre WJ (1987) J Comput Chem 8:861

    Article  CAS  Google Scholar 

  6. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  7. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  8. Rassolov V, Pople JA, Ratner M, Windus TL (1998) J Chem Phys 109:1223

    Article  CAS  Google Scholar 

  9. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070

    Article  Google Scholar 

  10. Almlöf J, Taylor PR (1990) J Chem Phys 92:551

    Article  Google Scholar 

  11. Widmark PO, Malmqvist PA, Roos BO (1990) Theor Chem Acc 77:291

    Article  CAS  Google Scholar 

  12. Widmark PO, Persson BJ, Roos BO (1991) Theor Chem Acc 79:419

    Article  CAS  Google Scholar 

  13. Pierloot K, Dumez B, Widmark PO, Roos BO (1995) Theor Chem Acc 90:87

    Article  CAS  Google Scholar 

  14. Pou-Amérigo R, Merchán M, Nebot-Gil I, Widmark PO, Roos BO (1995) Theor Chem Acc 92:149

    Article  Google Scholar 

  15. Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark PO (2004) J Phys Chem A 108:2851

    Article  CAS  Google Scholar 

  16. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  17. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6769

    Article  Google Scholar 

  18. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  19. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667

    Article  CAS  Google Scholar 

  20. Douglas M, Kroll NM (1974) Ann Phys (NY) 82:89

    Article  CAS  Google Scholar 

  21. Hess BA (1985) Phys Rev A 32:756

    Article  Google Scholar 

  22. Hess BA (1986) Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  23. Chang Ch, Pélissier M, Durand P (1986) Physica Scripta 34:394

    Article  CAS  Google Scholar 

  24. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597

    Article  Google Scholar 

  25. Noro T, Sekiya M, Koga T, Shimazaki T (2012) Theor Chem Acc 131:1124

    Article  Google Scholar 

  26. Sekiya M, Noro T, Koga T (2012) Theor Chem Acc 131:1247

    Article  Google Scholar 

  27. Noro T, Sekiya M, Koga T (2013) Theor Chem Acc 132:1363

    Article  Google Scholar 

  28. Pantazis DA, Chen X-Y, Landis CR, Neese F (2008) J Chem Theory Comput 4:908

    Article  CAS  Google Scholar 

  29. Pantazis DA, Neese F (2011) J Chem Theory Comput 7:677

    Article  CAS  Google Scholar 

  30. Davidson ER (1996) Chem Phys Lett 260:514

    Article  CAS  Google Scholar 

  31. Jensen F (2014) J Chem Theory Comput 10:1074

    Article  CAS  Google Scholar 

  32. Jensen F (2001) J Chem Phys 115:9113

    Article  CAS  Google Scholar 

  33. Jensen F (2002) J Chem Phys 116:3502

    Article  CAS  Google Scholar 

  34. Jensen F, Helgaker T (2004) J Chem Phys 121:3463

    Article  CAS  Google Scholar 

  35. Jensen F (2007) J Phys Chem A 111:11198

    Article  CAS  Google Scholar 

  36. Jensen F (2012) J Chem Phys 136:114107

    Article  Google Scholar 

  37. Jensen F (2013) J Chem Phys 138:014107

    Article  Google Scholar 

  38. Phillips JC, Kleinman L (1959) Phys Rev 116:287

    Article  CAS  Google Scholar 

  39. Weeks JD, Rice SA (1968) J Chem Phys 49:2741

    Article  CAS  Google Scholar 

  40. Kahn L, Baybutt P, Truhlar DG (1976) J Chem Phys 65:3826

    Article  CAS  Google Scholar 

  41. Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) Computer Phys Commun 55:425

    Article  CAS  Google Scholar 

  42. Dyall KG, Fægri K Jr (1996) Theor Chim Acta 94:39

    CAS  Google Scholar 

  43. Faas S, Snijders JG, van Lenthe JH, van Lenthe E, Baerends EJ (1995) Chem Phys Lett 246:632

    Article  CAS  Google Scholar 

  44. Dyall KG (1998) Theor Chem Acc 99:366

    CAS  Google Scholar 

  45. Dyall KG (2002) Theor Chem Acc 108:365

    Article  CAS  Google Scholar 

  46. Fægri K Jr (2001) Theor Chem Acc 105:252

    Article  Google Scholar 

  47. Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207

    Article  CAS  Google Scholar 

  48. Dyall KG (2002) Theor Chem Acc 108:335

    Article  CAS  Google Scholar 

  49. Dyall KG (2004) Theor Chem Acc 112:403

    Article  CAS  Google Scholar 

  50. Dyall KG (2006) Theor Chem Acc 115:441

    Article  CAS  Google Scholar 

  51. Dyall KG (2007) Theor Chem Acc 117:483

    Article  CAS  Google Scholar 

  52. Dyall KG (2007) Theor Chem Acc 117:491

    Article  CAS  Google Scholar 

  53. Dyall KG (2009) J Phys Chem A 113:12638

    Article  CAS  Google Scholar 

  54. Dyall KG, Gomes ASP (2010) Theor Chem Acc 125:97

    Article  CAS  Google Scholar 

  55. Gomes ASP, Visscher L, Dyall KG (2010) Theor Chem Acc 127:369

    Article  CAS  Google Scholar 

  56. Dyall KG (2016) Theor Chem Acc 135:128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth G. Dyall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyall, K.G. Semi-segmented contraction of generally contracted basis sets by property minimization. Theor Chem Acc 135, 237 (2016). https://doi.org/10.1007/s00214-016-1987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1987-5

Keywords

Navigation