Skip to main content
Log in

Analysis of a failure of the CC2 coupled-cluster method for bond lengths of SnO and PbO

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

CC2 model is found to overestimate bond lengths of SnO and PbO by about 0.25 Å, while both second-order Møller–Plesset perturbation theory and coupled-cluster singles and doubles give reasonable results. Previously, analysis shows that the [[U, T 1], T 1] term in the doubles equation of CC2 is the origin of failure for CC2 and some truncated CC models have been suggested to achieve reasonable result for ozone, where CC2 is unable to obtain a stable structure. However, these remedies are unable to afford reasonable bond lengths of SnO and PbO. Based on a term-wise analysis, our results indicate that the [U, T 1] term results in failure of CC2. CC2 model by removing this term will provide results that agree well with those of MP2. Furthermore, the [[U, T 2], T 1] term absent in the CC2 while present in doubles equation of CCSD can balance this [U, T 1] term and CC2 model augmented with this term is able to afford reasonable results for PbO, SnO and ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taylor PR (1994) Lecture notes in quantum chemistry II. In: Roos BO (ed) European summer school in quantum chemistry. Springer, Berlin, p 125

    Google Scholar 

  2. Gauss J (1998) Encyclopedia of computational chemistry. In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollmann PA, Schaefer HF, Schreiner PR (eds). Wiley, New York, p 615

  3. Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291

    Article  CAS  Google Scholar 

  4. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  5. Noga J, Bartlett RJ (1988) J Chem Phys 89:3401

    Article  CAS  Google Scholar 

  6. Christiansen O, Koch H, Jørgensen P (1995) Chem Phys Lett 243:409

    Article  CAS  Google Scholar 

  7. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  8. Koch H, Christiansen O, Jørgensen P, Sanchez de Merás AM, Helgaker T (1997) J Chem Phys 106:1808

    Article  CAS  Google Scholar 

  9. Hättig C (2003) J Chem Phys 118:7751

    Article  Google Scholar 

  10. Kats D, Korona T, Schutz M (2006) J Chem Phys 125:104106

    Article  Google Scholar 

  11. Kats D, Korona T, Schutz M (2007) J Chem Phys 127:064107

    Article  Google Scholar 

  12. Borges I, Aquino AJA, Barbatti M, Lischka H (2009) Int J Quant Chem 109:2348

    Article  CAS  Google Scholar 

  13. Etinski M, Fleig T, Marian CM (2009) J Phys Chem A 113:11809

    Article  CAS  Google Scholar 

  14. Rocha-Rinza T, Christiansen O (2009) Chem Phys Lett 482:44

    Article  CAS  Google Scholar 

  15. Christiansen O, Koch H, Jørgensen P (1996) J Chem Phys 105:1451

    Article  CAS  Google Scholar 

  16. Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) J Chem Phys 128:134110

    Article  Google Scholar 

  17. Falden HH, Falster-Hansen KR, Bak KL, Rettrup S, Sauer SP (2009) J Phys Chem A 113:11995

    Article  CAS  Google Scholar 

  18. Sauer SP, Schreiber M, Silva-Junior MR, Thiel W (2009) J Chem Theor Comput 5:555

    Article  CAS  Google Scholar 

  19. Silva-Junior MR, Sauer SPA, Schreiber M, Thiel W (2010) Mol Phys 108:453

    Article  CAS  Google Scholar 

  20. Hättig C, Weigend F (2000) J Chem Phys 113:5154

    Article  Google Scholar 

  21. Köhn A, Hättig C (2003) J Chem Phys 119:5021

    Article  Google Scholar 

  22. Hellweg A, Grün SA, Hättig C (2008) Phys Chem Chem Phys 10:4119

    Article  CAS  Google Scholar 

  23. Hellweg A (2011) J Chem Phys 134:064103

    Article  Google Scholar 

  24. Freundorfer K, Kats D, Korona T, Schütz M (2010) J Chem Phys 133:244110

    Article  Google Scholar 

  25. Send R, Kaila VR, Sundholm D (2011) J Chem Phys 134:214114

    Article  Google Scholar 

  26. Hohenstein EG, Kokkila SI, Parrish RM, Martínez TJ (2013) J Phys Chem B 117:12972

    Article  CAS  Google Scholar 

  27. Hohenstein EG, Kokkila SI, Parrish RM, Martinez TJ (2013) J Chem Phys 138:124111

    Article  Google Scholar 

  28. Winter NO, Hattig C (2011) J Chem Phys 134:184101

    Article  Google Scholar 

  29. Helmich B, Hättig C (2011) J Chem Phys 135:214106

    Article  Google Scholar 

  30. Helmich B, Hattig C (2013) J Chem Phys 139:084114

    Article  Google Scholar 

  31. Ledermuller K, Kats D, Schutz M (2013) J Chem Phys 139:084111

    Article  Google Scholar 

  32. Köhn A, Hättig C (2003) J Chem Phys 119:5021

    Article  Google Scholar 

  33. Winter NOC, Hättig C (2012) Chem Phys 401:217

    Article  CAS  Google Scholar 

  34. Ledermüller K, Schütz M (2014) J Chem Phys 140:164113

    Article  Google Scholar 

  35. Friese DH, Hättig C, Koßmann J (2013) J Chem Theor Comput 9:1469

    Article  CAS  Google Scholar 

  36. Wang Z, Wang F (2013) Phys Chem Chem Phys 15:17922

    Article  CAS  Google Scholar 

  37. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, constants of diatomic molecules. Van Nostrand Rienhold, New York

    Book  Google Scholar 

  38. Geertsen J, Rittby M, Bartlett RJ (1989) Chem Phys Lett 164:57

    Article  CAS  Google Scholar 

  39. Pabst M, Köhn A, Gauss J, Stanton JF (2010) Chem Phys Lett 495:135

    Article  CAS  Google Scholar 

  40. CFOUR, a quantum chemical program package written by Stanton JF, Gauss J, Harding ME, Szalay PG with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau T-C, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, Mück LA, O’Neill DP, Price DR, Prochnow E, Puzzarini C, Ruud K, Schiffmann F, Schwalbach W, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (Almlöf J, Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Aa Jensen HJ, Jørgensen P, Olsen J), and ECP routines by Mitin AV, van Wüllen C. For the current version. http://www.cfour.de

  41. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563

    Article  CAS  Google Scholar 

  42. Peterson KA (2003) J Chem Phys 119:11099

    Article  CAS  Google Scholar 

  43. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  44. Head-Gordon M, Rico RJ, Oumi M, Lee TJ (1994) Chem Phys Lett 219:21

    Article  CAS  Google Scholar 

  45. Trofimov A, Schirmer J (1995) J Phys B 28:2299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Nature Science Foundation of China (Grant No. 21273155) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wang.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, F. Analysis of a failure of the CC2 coupled-cluster method for bond lengths of SnO and PbO. Theor Chem Acc 133, 1579 (2014). https://doi.org/10.1007/s00214-014-1579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1579-1

Keywords

Navigation