Skip to main content

Advertisement

Log in

Theoretical study on the adsorption mechanism of iodine molecule on platinum surface in dye-sensitized solar cells

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

By means of density functional theory calculations, the adsorption process of I2 at Pt (111) surface in dye-sensitized solar cells (DSSCs) has been investigated. The obtained adsorption energies and stable structures depending on the adsorption sites of the Pt surface are in good agreement with experimental values. Our results show that the dissociative chemisorption and the non-dissociative chemisorption are competitive for the adsorption of I2 on the Pt surface, and the dissociative pathway is more favored in energy. This study is expected to enrich the understanding on the origin of the excellent heterogeneous catalytic performance of Pt for triiodide reduction and the complex iodine chemistry in DSSCs. Understanding of this adsorption mechanism is helpful for rational screening for redox couple and the Pt-free alternative counter electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grätzel M (2001) Nature 414:338–344

    Article  Google Scholar 

  2. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  3. Yella A, Lee HW, Tsao HN et al (2011) Science 334:629–634

    Article  CAS  Google Scholar 

  4. Green MA (2002) Phys E Low Dimens Syst Nanostruct 14:11–17

    Article  CAS  Google Scholar 

  5. Desai UV, Xu CK, Wu JM, Gao D (2013) J Phys Chem C 117:3232–3239

    Article  CAS  Google Scholar 

  6. Hu Q, Wu CC, Cao LQ, Chi B, Pu J, Jian L (2013) J Power Sources 226:8–15

    Article  CAS  Google Scholar 

  7. Bai Y, Zhang J, Zhou DF, Wang YH, Zhang M, Wang P (2011) J Am Chem Soc 133:11442–11445

    Article  CAS  Google Scholar 

  8. Cai N, Li RZ, Wang YL, Zhang M, Wang P (2013) Energy Environ Sci 6:139–147

    Article  CAS  Google Scholar 

  9. Haid S, Marszalek M, Mishra A et al (2012) Adv Funct Mater 22:1291–1302

    Article  CAS  Google Scholar 

  10. Chen SL, Yang LN, Li ZS (2013) J Power Sources 223:86–93

    Article  CAS  Google Scholar 

  11. Yang L-N, Sun Z–Z, Chen S-L, Li Z-S (2013) Dyes Pigm 99:29–35

    Article  CAS  Google Scholar 

  12. Dong H, Zhou X, Jiang C (2012) Theor Chem Acc 131:1102

    Google Scholar 

  13. Lee M-J, Balanay MP, Kim DH (2012) Theor Chem Acc 131:1269

    Google Scholar 

  14. Kashif MK, Axelson JC, Duffy NW et al (2012) J Am Chem Soc 134:16646–16653

    Article  CAS  Google Scholar 

  15. Gong F, Wang H, Xu X, Zhou G, Wang ZS (2012) J Am Chem Soc 134:10953–10958

    Article  CAS  Google Scholar 

  16. Cappel UB, Smeigh AL, Plogmaker S et al (2011) J Phys Chem C 115:4345–4358

    Article  CAS  Google Scholar 

  17. Asaduzzaman AM, Schreckenbach G (2011) Theor Chem Acc 129:199–208

    Article  CAS  Google Scholar 

  18. Gregg BA, Pichot F, Ferrere S, Fields CL (2001) J Phys Chem B 105:1422–1429

    Article  CAS  Google Scholar 

  19. Rowley JG, Farnum BH, Ardo S, Meyer GJ (2010) J Phys Chem Lett 1:3132–3140

    Article  CAS  Google Scholar 

  20. Jono R, Sumita M, Tateyama Y, Yamashita K (2012) J Phys Chem Lett 3:3581–3584

    Article  CAS  Google Scholar 

  21. Zhu HY, Guo WY, Jiang RB et al (2010) Langmuir 26:12017–12025

    Article  CAS  Google Scholar 

  22. Tang HR, Trout BL (2005) J Phys Chem B 109:17630–17634

    Article  CAS  Google Scholar 

  23. Morin C, Simon D, Sautet P (2004) J Phys Chem B 108:12084–12091

    Article  CAS  Google Scholar 

  24. Tian F, Jinnouchi R, Anderson AB (2009) J Phys Chem C 113:17484–17492

    Article  CAS  Google Scholar 

  25. Ou LH, Yang F, Liu YW, Chen SL (2009) J Phys Chem C 113:20657–20665

    Article  CAS  Google Scholar 

  26. Hauch A, Georg A (2001) Electrochim Acta 46:3457–3466

    Article  CAS  Google Scholar 

  27. Macagno VA, Giordano MC, Arvía AJ (1969) Electrochim Acta 14:335–357

    Article  CAS  Google Scholar 

  28. Dané LM, Janssen LJJ, Hoogland JG (1968) Electrochim Acta 13:507–518

    Article  Google Scholar 

  29. Hou Y, Wang D, Yang XH et al (2013) Nat Commun 4:1583

    Article  Google Scholar 

  30. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  33. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  34. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  35. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  36. Popa C, Offermans WK, van Santen RA, Jansen APJ (2006) Phys Rev B 74:155428

    Article  Google Scholar 

  37. Shamov GA, Schreckenbach G, Vo TN (2007) Chemistry 13:4932–4947

    Article  CAS  Google Scholar 

  38. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  39. Henkelman G, Jonsson H (2000) J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  40. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  41. Delley B (1996) J Phys Chem 100:6107–6110

    Article  CAS  Google Scholar 

  42. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  43. Tkatchenko A, Batina N, Cedillo A, Galvan M (2005) Surf Sci 581:58–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Major State Basic Research Development Programs of China (2011CBA00701), the National Natural Science Foundation of China (21103010, 21303007), the 111 Project (B07012), the Basic Research Fund of Beijing Institute of Technology (20121942011), and Beijing Key Laboratory for Chemical Power Source and Green Catalysis (2013CX02031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan-Song Li or Ze-Sheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Li, QS., Lu, GQ. et al. Theoretical study on the adsorption mechanism of iodine molecule on platinum surface in dye-sensitized solar cells. Theor Chem Acc 133, 1437 (2014). https://doi.org/10.1007/s00214-013-1437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1437-6

Keywords

Navigation