Skip to main content
Log in

Melting transition of confined Lennard-Jones solids in slit pores

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The melting transition of a Lennard-Jones (LJ) system confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. We examine various mechanisms to locate the pore melting temperature under confinement using molecular simulations. Three types of structure-less pore walls are considered, namely strongly attractive walls, weakly attractive walls, and repulsive walls. In particular, we present details of the density–temperature hysteresis, Lindemann parameter, and non-Gaussian parameter for various pore sizes ranging from 8 to 3 molecular diameters. The methods as used in this work are found applicable for repulsive, weak, and moderately attractive pores. Using the above criteria, we estimated the melting temperature for various pore surfaces and pore sizes. The melting temperature, for an attractive surface, is observed to be elevated or depressed depending on the pore size. In contrast, depression in the melting temperature is observed in the case of weakly attractive and repulsive surfaces. Crossover behavior from three-dimensional to two-dimensional for weakly attractive and repulsive surfaces is proposed using the relation ΔT m ~ H ν, with ν ranging from 0.66 to 0.81 and 1.59 to 2.1 for 2D and 3D, respectively. The methods, viz., Lindemann and non-Gaussian parameters, however, fail in predicting melting temperature for ε wf  > 8 and α > 4 for LJ 6-12 and LJ 9-3, surfaces, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang Z, Gekhtman D, Dresselhaus MS, Ying JY (1999) Chem Matter 11:1659

    Article  CAS  Google Scholar 

  2. Alcoutlabi M, McKenna GB (2005) J Phys Condens Matter 17:R461

    Article  CAS  Google Scholar 

  3. Duffy JA, Wilkinson NJ, Fretwell HM, Alam MA (1995) J Phys Condens Matter 7:L27

    Article  CAS  Google Scholar 

  4. Unruh KM, Huber TE, Huber CA (1993) Phys Rev B 48:9021

    Article  CAS  Google Scholar 

  5. Klein J, Kumacheva E (1995) Science 269:816

    Article  CAS  Google Scholar 

  6. Gelb LD, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (1999) Rep Prog Phys 62:1573

    Article  CAS  Google Scholar 

  7. Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (2006) J Phys Condens Matter 16:15

    Article  Google Scholar 

  8. Murray CA, Winkle DHV (1987) Phys Rev Lett 58:1200

    Article  CAS  Google Scholar 

  9. Tang Y, Armstrong AJ, Mockler RC, Sullivan WJO (1989) Phys Rev Lett 62:2401

    Article  CAS  Google Scholar 

  10. Murray CA, Sprenger WO, Wenk RA (1990) Phys Rev B 42:688

    Article  Google Scholar 

  11. Murray CA, Sprenger WO, Wenk RA (1990) J Phys Condens Matter 2:SA385

    Article  Google Scholar 

  12. Warnock J, Awschalom DD, Shafer MW (1986) Phys Rev Lett 57:1753

    Article  CAS  Google Scholar 

  13. Klein J, Perahia D, Warburg S, Fetters LJ (1991) Nature 352

  14. Klein J, Kumacheva E, Perahia D, Mahalu D, Warburg S (1994) Faraday Spec Discuss Chem Soc 98

  15. Delogu F (2006) Phys Rev B 73:184108

    Article  Google Scholar 

  16. Delogu F (2006) J Phys Chem B 110:12645

    Article  CAS  Google Scholar 

  17. Delogu F (2006) J Phys Condens Matter 18:5639

    Article  CAS  Google Scholar 

  18. Huang HC, Kwak SK, Singh JK (2009) J Chem Phys 130:164511

    Article  Google Scholar 

  19. Schmidt M, Löwen H (1996) Phys Rev Lett 76:4552

    Article  CAS  Google Scholar 

  20. Miyahara M, Gubbins KE (1997) J Chem Phys 106:2865

    Article  CAS  Google Scholar 

  21. Maddox MW, Gubbins KE (1997) J Chem Phys 107:9659

    Article  CAS  Google Scholar 

  22. Radhakrishnan R, Gubbins KE (1999) Mol Phys 96:1249

    Article  CAS  Google Scholar 

  23. Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, Gras R, Radhakrishnan R, Gubbins KE (2001) J Chem Phys 114:950

    Article  CAS  Google Scholar 

  24. Coasne B, Czwartos J, Gubbins KE, Hung FR, Sliwinska-Bartkowiak M (2005) Adsorption 11:301

    Article  Google Scholar 

  25. Radhakrishnan R, Gubbins KE, Sliwinska-Bartkowiak M (2002) J Chem Phys 116:1147

    Article  CAS  Google Scholar 

  26. Radhakrishnan R, Gubbins KE, Sliwinska-Bartkowiak M (2000) J Chem Phys 112:11048

    Article  CAS  Google Scholar 

  27. Kaneko T, Mima T, Yasuoka K (2010) Chem Phys Lett 490:165

    Article  CAS  Google Scholar 

  28. Koga K, Tanaka H (2005) J Chem Phys 122:104711

    Article  Google Scholar 

  29. Jin ZH, Gumbsch P, Lu K, Ma E (2001) Phys Rev Lett 87:055703

    Article  CAS  Google Scholar 

  30. Granato AV, Joncich DM, Khonik VA (2010) Appl Phys Lett 97:171911

    Article  Google Scholar 

  31. Born M (1939) J Chem Phys 7:591

    Article  CAS  Google Scholar 

  32. Radhakrishnan R, Gubbins KE (1999) J Chem Phys 111:9058

    Article  CAS  Google Scholar 

  33. Hansen JP, Verlet L (1969) Phys Rev 184:151

    Article  CAS  Google Scholar 

  34. Gotze W, Liicke M (1976) J Low Temp Phys 25:671

    Article  Google Scholar 

  35. Broughton JQ, Gilmer GH, Weeks JD (1982) Phys Rev B 25:4651

    Article  CAS  Google Scholar 

  36. Ranganathan S, Pathak KN (1992) Phys Rev A 45:5789

    Article  CAS  Google Scholar 

  37. Monson PA, Kofke DA (2000) Adv Chem Phys 115:113

    Article  Google Scholar 

  38. Lindemann FA (1910) Z phys 11:609

    CAS  Google Scholar 

  39. Hoang VV (2011) Philos Mag 91(26):3443

    Article  Google Scholar 

  40. Stillinger FH (1995) Science 267:1935

    Article  CAS  Google Scholar 

  41. Cailloi JM, Levesque D, Weis JJ, Hansen JP (1982) J Stat Phys 28

  42. Plimpton SJ (1995) J Comp Phys 117:1

    Article  CAS  Google Scholar 

  43. Kaneko T, Yasuoka K, Zeng XC (2012) Mol Sim 38:373

    Article  CAS  Google Scholar 

  44. Dominguez H, Allen MP, Evans R (1999) Mol Phys 96:209

    Article  CAS  Google Scholar 

  45. Hoef MAvd (2000) J Chem Phys 113:8142

    Article  Google Scholar 

  46. Eike DM, Brennecke JF, Maginn EJ (2005) J Chem Phys 014115:014115

    Article  Google Scholar 

  47. Morishige K, Kawano K (2000) 104:2894

  48. Ayappa KG, Ghatak C (2002) J Chem Phys 117:5373

    Article  CAS  Google Scholar 

  49. Fisher ME, Nakanishi H (1981) J Chem Phys 75:5857

    Article  CAS  Google Scholar 

  50. Singh SK, Singh JK, Kwak SK, Deo G (2010) Chem Phys Lett 494:182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant K. Singh.

Additional information

Published as part of the special collection of articles derived from the conference: Foundations of Molecular Modeling and Simulation 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, C.K., Singh, J.K. Melting transition of confined Lennard-Jones solids in slit pores. Theor Chem Acc 132, 1351 (2013). https://doi.org/10.1007/s00214-013-1351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1351-y

Keywords

Navigation