Skip to main content
Log in

Adsorption of successive layers of H2 molecules on a model copper surface: performances of second- to fifth-rung exchange-correlation functionals

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The interaction of H2 molecules with a Cu(100) metallic surface has been investigated by DFT approaches using a (H2) n Cu13 cluster model. Nine exchange-correlation functionals, belonging to the generalized gradient approximations (GGA), meta GGA (mGGA), hybrid Kohn–Sham/Hartree–Fock models, either based on GGAs or mGGAs, range-separated hybrids, and double-hybrid families, have been tested on the chemisorption and physisorption processes involving one or two H2 layers. The addition of an empirical correction for dispersion has also been tested for some of these functionals. The calculated energies and structural parameters were compared to sophisticated multi reference configuration interaction including Davidson’s correction for quadruple excitations (MRCI + Q). Our results show that among the nine considered exchange-correlation functionals, none can accurately reproduce all processes involved in the successive layers adsorption. Although an hybrid based on a mGGA such as M06-2X can quantitatively describe both the physisorption step and dissociation barriers involved in the adsorption of the first H2, it fails to reproduce its chemisorption. On the other hand, significant discrepancies with the reference post-HF data are obtained for the description of the second layer interaction, no matter which functional is considered, outlining the need of improvement and/or development of exchange-correlation functionals suitable for complex systems such as H2/H2Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Groß A (1998) Surf Sci 32:291

    Article  Google Scholar 

  2. Darling GR (1994) J Chem Phys 101:3268

    Article  CAS  Google Scholar 

  3. Watts E, Sitz GO (2001) J Chem Phys 114:4171

    Article  CAS  Google Scholar 

  4. Somers MF, Olsen RA, Busnengo HF, Kroes GJ (2004) J Chem Phys 121:11379

    Article  CAS  Google Scholar 

  5. Diño WA, Kaisai H, Okiji A (2000) Prog Surf Sci 63:63

    Article  Google Scholar 

  6. Wiesenekker G, Kroes GJ, Baerends EJ, Mowrey RC (1995) J Chem Phys 102:3873

    Article  CAS  Google Scholar 

  7. Wiesenekker G, Kroes GJ, Baerends EJ (1996) J Chem Phys 104:7344

    Article  CAS  Google Scholar 

  8. White JA, Bird DM (1994) Phys Rev Lett 73:1404

    Article  CAS  Google Scholar 

  9. Kratzer P, Hammer B, Nϕrskov JK (1996) Surf Sci 359:45

    Article  CAS  Google Scholar 

  10. Raghavan K, Stave MS, DePristo AE (1999) J Chem Phys 91:1904

    Article  Google Scholar 

  11. Dominguez-Ariza D, Sousa C, Harrison NM, Ganduglia-Pirovano MV, Illas F (2003) Surf Sci 522:185

    Article  CAS  Google Scholar 

  12. Jaque P, Toro-Labbé A (2002) J Chem Phys 117:3208

    Article  CAS  Google Scholar 

  13. Siegbahn PEM, Blomberg MRA, Bauschlicher CW Jr (1984) J Chem Phys 81:2103

    Article  CAS  Google Scholar 

  14. Whitten JL, Yang H (1996) Surf Sci Rep 24:55

    Article  CAS  Google Scholar 

  15. Cilpa G, Chambaud G (2007) Surf Sci 601:320

    Article  CAS  Google Scholar 

  16. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689

    Article  CAS  Google Scholar 

  17. Kurth S, Perdew JP, Blaha P (1999) Int J Quant Chem 75:889

    Article  CAS  Google Scholar 

  18. Tao J, Perdew JP (2005) J Chem Phys 122:114102

    Article  Google Scholar 

  19. Adamo C, Barone V (1998) J Chem Phys 108:664

    Article  CAS  Google Scholar 

  20. Zhao Y, Truhlar DG (2007) J Chem Theor Comput 3:289

    Article  CAS  Google Scholar 

  21. Grimme S (2006) J Chem Phys 124:34108

    Article  Google Scholar 

  22. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  23. Huenerbein R, Schirmer B, Moellmann J, Grimme S (2010) Phys Chem Chem Phys 12:6940

    Article  CAS  Google Scholar 

  24. Krishtal A, Vanommeslaeghe K, Olasz A, Veszprémi T, Van Alsenoy C, Geerlings P (2009) J Chem Phys 130:174101

    Article  Google Scholar 

  25. Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) J Chem Phys 123:62201

    Article  Google Scholar 

  26. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757

    Article  CAS  Google Scholar 

  27. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  28. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Google Scholar 

  29. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  30. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  31. Patton DC, Pederson MR (1997) Phys Rev A 56:2495

    Article  Google Scholar 

  32. Johnson ER, Dilabio GA (2006) Chem Phys Lett 419:333

    Article  CAS  Google Scholar 

  33. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  34. Becke AD (1997) J Chem Phys 107:8554

    Article  CAS  Google Scholar 

  35. Tsuzuki S, Lüthi HP (2001) J Chem Phys 114:3949–3957

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  37. Zhao Y, Truhlar DG (2008) Theor Chem Acta 120:215

    Article  CAS  Google Scholar 

  38. Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  Google Scholar 

  39. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A.02. Gaussian, Wallingford

  41. Kaupp M, Schleyer PvR, Stoll H, Preuss H (1991) J Chem Phys 94:1360

    Article  CAS  Google Scholar 

  42. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  43. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  44. Clark T, Chandrasekhar J, Schleyer PVR (1983) J Comput Chem 4:294

    Article  CAS  Google Scholar 

  45. Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) Chem Phys Lett 197:499

    Article  CAS  Google Scholar 

  46. Kokh DB, Buenker RJ, Whitten JL (2006) Surf Sci 600:5104

    Article  CAS  Google Scholar 

  47. Eichler A, Kresse G, Hafner J (1998) Surf Sci 397:116

    Article  CAS  Google Scholar 

  48. Cilpa G, Guitou M, Chambaud G (2008) Surf Sci 602:2894

    Article  CAS  Google Scholar 

  49. Andersson S, Wilzén L, Persson M (1988) Phys Rev B 38:2967

    Article  CAS  Google Scholar 

  50. Andersson S, Persson M, Harris J (1996) Surf Sci Lett 360:L499

    Article  CAS  Google Scholar 

  51. Bartlett R, Grabowski I, Hirata S, Ivanov S (2005) J Chem Phys 122:34104

    Article  Google Scholar 

  52. Kroes GJ, Baerends EJ, Mowrey RC (1997) Phys Rev Lett 78:3583

    Article  CAS  Google Scholar 

  53. Guvelioglu GH, Ma P, He X (2005) Phys Rev Lett 94:026103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Labat.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cilpa, G., Colin, J., Labat, F. et al. Adsorption of successive layers of H2 molecules on a model copper surface: performances of second- to fifth-rung exchange-correlation functionals. Theor Chem Acc 131, 1189 (2012). https://doi.org/10.1007/s00214-012-1189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1189-8

Keywords

Navigation