Skip to main content
Log in

Theoretical study for the CH3OCF2CF2OCHO + Cl reaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction of CH3OCF2CF2OCHO with Cl atom has been investigated theoretically by direct dynamics method. The BB1K hybrid functional in conjunction with the 6-31 + G(d,p) basis set has been used to optimize the geometries for the stationary points and explore the potential energy surface of the reaction. Four rotation conformers (RC1-4) of CH3OCF2CF2OCHO are identified, and they are all considered in the kinetic calculation. For each conformer, there are two kinds of H-abstraction channels and one displacement channel, and the latter one should be negligible due to involving much higher energy barrier than the former two. The individual rate constants for each H-abstraction channel are evaluated by the improved canonical variational transition-state theory with a small-curvature tunneling correction. The overall rate constant is evaluated by the Boltzmann distribution function, and a fitted four-parameter rate constant expression is obtained over a wide temperature range of 200–2,000 K. The agreement between the calculated and available experimental value at 296 K is good. The contribution of each conformer to the title reaction is discussed with respect to the temperature. In addition, because of the lack of available experimental data for the species involved in the reactions, the enthalpies of the formation (ΔH f,298°) for the reactant and its product radicals are predicted via isodesmic reaction at the BB1K/6-31 + G(d,p) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marchionni G, Visca M, Eur Pat Appl. 1275678A 2003 (Chem Abs 138, 90675)

  2. Sianesi D, Marchionni G, De Pasquale RJ (1994) In: Banks RE (ed) Organofluorine chemistry: principles and commercial applications. Plenum Press, New York

  3. Marchionni G, Ajroldi G, Pezzin G (1996) In: Agarwal SL, Russom S (eds) Comprehensive polymer science (Second Supplement). Pergamon, London

  4. Marchionni G, Guarda PA (1998) U.S. Patent, 5,744,651

  5. Yu HB, Cui FC, Wang YX, Liu HX, Liu JY (2011) J Theor Comp Chem 10:231–244

    Article  CAS  Google Scholar 

  6. Sulback Andersen MP, Hurley MD, Wallington TJ, Blandini F, Jensen NR, Librando V, Hjorth J, Marchionni G, Avataneo M, Visca M, Nicolaisen FM, Nielsen OJ (2004) J Phys Chem A 108:1964–1972

    Article  Google Scholar 

  7. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715

    Article  CAS  Google Scholar 

  8. Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440

    Article  CAS  Google Scholar 

  9. Truhlar DG, Isaacson AD, Garrett BC (1985) Generalized transition state theory. In: Baer M (ed) The theory of chemical reaction dynamics, vol 4. CRC Press, Boca Raton, p 65

    Google Scholar 

  10. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159

    Article  CAS  Google Scholar 

  11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, ScalmaniG, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford, CT

  12. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  13. Becke AD (1996) J Chem Phys 104:1040

    Article  CAS  Google Scholar 

  14. Zhao Y, Gonzales-Garcia N, Truhlar DG (2005) J Phys Chem A 109:2012

    Article  CAS  Google Scholar 

  15. Parveen S, Chandra AK (2009) J Phys Chem A 113:177–183

    Article  CAS  Google Scholar 

  16. Gao H, Wang YX, Liu JY, Yang L, Li ZS, Sun CC (2008) J Phys Chem A 112:4176–4185

    Google Scholar 

  17. Hemelsoet K, Moran D, Speybroeck VV, Waroquier M, Radom L (2006) J Phys Chem A 110:8942

    Article  CAS  Google Scholar 

  18. Corchado JC, Chuang YY, Fast PL, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Ramos AF, Ellingson BA, Lynch BJ, Melissas VS, Villa J, Rossi I, Coitino EL, Pu J, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2007) POLYRATE, version 9.7. University of Minnesota, Minneapolis

  19. Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84:1730–1748

    Article  CAS  Google Scholar 

  20. Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992) Comput Phys Commun 71:235

    Article  CAS  Google Scholar 

  21. Liu Y-P, Lynch GC, Truong TN, Lu D-H, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408

    Article  CAS  Google Scholar 

  22. Piter KS, Gwinn WD (1942) J Chem Phys 10:428

    Article  Google Scholar 

  23. Piter KS (1946) J Chem Phys 14:239

    Article  Google Scholar 

  24. Truhlar DG (1991) J Comput Chem 12:266–270

    Article  CAS  Google Scholar 

  25. Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221

    Article  CAS  Google Scholar 

  26. Chuang YY, Truhlar DG (2004) J Chem Phys 121:7036

    Article  CAS  Google Scholar 

  27. Chuang YY, Truhlar DG (2006) J Chem Phys 124:179903

    Article  Google Scholar 

  28. Ellingson BA, Lynch VA, Mielke SL, Truhlar DG (2006) J Chem Phys 125:084305

    Article  Google Scholar 

  29. Zheng JJ, Truhlar DG (2010) Phys Chem Chem Phys 12:7782–7793

    Article  CAS  Google Scholar 

  30. Linstrom PJ, Mallard WG (eds) (2009) Chemistry Webbook NIST. Available from: http://webbook.Nist.Gov/chemistry

Download references

Acknowledgments

We thank Professor Donald G. Truhlar for providing the POLYRATE 9.7 program. This work is supported by the National Nature Science Foundation of China (20973077, 20303007) and the Program for New Century Excellent Talents in University (NCET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-yao Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Ty., Yu, Hb., Ci, Cg. et al. Theoretical study for the CH3OCF2CF2OCHO + Cl reaction. Theor Chem Acc 131, 1119 (2012). https://doi.org/10.1007/s00214-012-1119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1119-9

Keywords

Navigation