Skip to main content
Log in

Ab initio interaction and spectral properties of CO+–He

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this contribution, ab initio methods have been used to study the open-shell CO+–He van der Waals (vdW) complex in both the ground and the first Π excited electronic state. Calculations were performed at the UCCSD(T) level of theory in the framework of the supermolecule approach using the cc-pVTZ basis set complemented with a set of standard bond functions in the middle of the vdW bond. Calculations predict a most-stable equilibrium conformation with β e=45°, R e =2.85 Å and D e =275 cm−1 for the ground CO+(X2Σ)–He(1S) state and β e=90°, R e =2.70 Å and D e =218 cm−1 for the excited CO +(A2Π)–He(1S) state. The dipole moment μ and independent components of the field polarizability α of the CO +–He vdW complex have been studied at the calculated equilibrium geometry of these states. The vertical excitation energies from the ground CO+(X 2Σ)–He(1S) to the excited CO+(A2Π)–He (1S) electronic state and corresponding shifts in the fluorescent spectrum with respect to the isolated CO+ molecule are also presented

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKellar ARW. (1998). J Chem Phys 108:1811

    Article  CAS  Google Scholar 

  2. McKellar ARW. (2000). J Chem Phys 113:525

    Article  Google Scholar 

  3. Chałasiński G., Szcześniak MM. (2000). In: State of the art and challenges of the ab initio theory of intermolecular interactions. Chem Rev 10:4227

    Article  CAS  Google Scholar 

  4. McKellar ARW., Xu Y., Jäger W., Bissonnette C. (1999). J Chem Phys 110:10766

    Article  CAS  Google Scholar 

  5. Hobza P., Zahradník R. (1988). In: The role of van der Waals systems in physical chemistry and in biodisciplines, studies in physical and theoretical chemistry. Elsevier, Amsterdam 52:13

  6. Miller S., Tennyson J., Follmeg B., Rosmus P. Werner H-J. (1993). J Chem Phys 89:2178

    Article  Google Scholar 

  7. Berning AB., Werner H-J. (1994). J Chem Phys 100: 1953

    Article  CAS  Google Scholar 

  8. Sapse A-M., Jain DC. (1996). J Phys Chem 100:11566

    Article  CAS  Google Scholar 

  9. Falcetta MF., Siska PE. (1993). Chem Phys Lett 213:531

    Article  CAS  Google Scholar 

  10. Maclagan RG., Viehland LA., Dickson AS. (1999). J Phys B 32:4947

    Article  CAS  Google Scholar 

  11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann, RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Cli.ord S, Ochterski J, Petersson A, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.7, Gaussian Inc., Pittsburgh, PA

  12. Tao F-M., Pan Y-K. (1992). J Chem Phys 97:4989

    Article  CAS  Google Scholar 

  13. Tao F-M. (1992). J Chem Phys 98:3049

    Article  Google Scholar 

  14. Boys S., Bernardi F. (1970). Mol Phys 19:553

    Article  CAS  Google Scholar 

  15. Chałasiński G., Gutowski M., Szcześniak M., Sadlej AJ., Scheiner S. (1994). J Chem Phys 101:6800

    Article  Google Scholar 

  16. Wagne F., Dunning T., Kok R. (1994). J Chem Phys 100:1326

    Article  Google Scholar 

  17. Dubernet ML., Flower D., Hutson J. (1991). J Chem Phys 94:7602

    Article  CAS  Google Scholar 

  18. Cybulski M., Burel R., Chałasiński G., Szcześniak M. (1995). J Chem Phys 103:10116

    Article  CAS  Google Scholar 

  19. Huber KP., Herzberg G. (1979). Constants of diatomic molecules. van Nostrand, New York

    Google Scholar 

  20. Maclagan RG., Viehland LA., Dickisons AS. (1999). J Phys B: At Opt Phys 32:4947

    Article  CAS  Google Scholar 

  21. Lotrich VF., van der Avoird A. (2003). J Chem Phys 118:1110

    Article  CAS  Google Scholar 

  22. Hamilton PA., Hughes AN., Sales KD. (1993). Chem Phys 99:436

    Article  CAS  Google Scholar 

  23. Davie K., Wallace R. (1998). Comp Phys Comm 51:217

    Article  Google Scholar 

  24. Pluta T., Sadlej AJ. (1998). Chem Phys Lett 297:391

    Article  CAS  Google Scholar 

  25. Kellö V., Lawley KP., Diercksen GHF. (2000). Chem Phys Lett 319:231

    Article  Google Scholar 

  26. Diercksen GHF., Hernández AJ. (1992). J Mol Struct 254:191

    Google Scholar 

  27. Mansfield CR., Peck ER. (1976). J Opt Soc Am 59:199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. Salazar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, M.C., Lugo, I., Hernández, A.J. et al. Ab initio interaction and spectral properties of CO+–He. Theor Chem Acc 115, 246–252 (2006). https://doi.org/10.1007/s00214-005-0009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0009-9

Keywords

Navigation