Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive performance and synaptic plasticity impairments in animal model of Alzheimer’s diseases

Abstract

Introduction

Alzheimer’s disease (AD) is a progressive brain disorder accompanied with synaptic failures and decline in cognitive and learning processes. Protease-activated receptor 1 (PAR1) is the major thrombin receptor in the brain that is implicated in synaptic plasticity and memory formation. In the current study, we hypothesized that inhibition of PAR1 would theoretically prevent amyloid beta (Aβ) accumulation in the brain and then contribute to reduce risk of AD. The aim of the present study was to evaluate the effect of PAR1 inhibition by using SCH (as an inhibitor of PAR1) on spatial learning, memory, and synaptic plasticity in the CA1 region of the hippocampus in rat model of Alzheimer’s disease.

Methods

For the induction of Alzheimer’s disease, amyloid beta (Aβ) 1–42 was injected in the CA1 region of the hippocampus. The rats were divided into four groups: group I (surgical sham); group II rat mode of Alzheimer’s disease (AD); group III (SCH) (25 μg/kg) intraperitoneally (i.p.), and group IV (AD + SCH). After 14 days of protocol, the rats in group III received SCH and 30 min after injection behavioral and electrophysiological tests were performed. Learning and memory ability was assessed by Morris water maze and novel object recognition tests. Extracellular evoked field excitatory postsynaptic potentials (fEPSP) were recorded in the stratum radiatum of the CA1 area.

Results

Our results showed that AD rats showed impairments in learning and memory, and long-term potentiation (LTP) was not induced in these rats. However, injection of SCH overcame the AD-induced impairment in LTP generation in the CA1 area of the hippocampus and improved learning and memory impairment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahn H-S, Foster C, Boykow G, Stamford A, Manna M, Graziano M (2000) Inhibition of cellular action of thrombin by N3-cyclopropyl-7-{[4-(1-methylethyl) phenyl] methyl}-7H-pyrrolo [3, 2-f] quinazoline-1, 3-diamine (SCH 79797), a nonpeptide thrombin receptor antagonist. Biochem Pharmacol 60:1425–1434

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Almonte AG, Hamill CE, Chhatwal JP, Wingo TS, Barber JA, Lyuboslavsky PN, Sweatt JD, Ressler KJ, White DA, Traynelis SF (2007) Learning and memory deficits in mice lacking protease activated receptor-1. Neurobiol Learn Mem 88:295–304

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD (2013) Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem 124:109–122

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. Arai T, Guo J-P, McGeer PL (2005) Proteolysis of non-phosphorylated and phosphorylated tau by thrombin. J Biol Chem 280:5145–5153

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Arai T, Miklossy J, Klegeris A, Guo J-P, McGeer PL (2006) Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J Neuropathol Exp Neurol 65:19–25

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Bagheri M, Joghataei M-T, Mohseni S, Roghani M (2011) Genistein ameliorates learning and memory deficits in amyloid β (1–40) rat model of Alzheimer’s disease. Neurobiol Learn Mem 95:270–276

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Bengoetxea X, Rodriguez-Perdigon M, Ramirez MJ (2015) Object recognition test for studying cognitive impairments in animal models of Alzheimer’s disease. Front Biosci (Schol Ed) 7:10–29

    Article  Google Scholar 

  8. Berkowitz LE, Harvey RE, Drake E, Thompson SM, Clark BJ (2018) Progressive impairment of directional and spatially precise trajectories by TgF344-Alzheimer’s disease rats in the Morris water task. Sci Rep 8:1–14

    CAS  Article  Google Scholar 

  9. Berry A, Tomidokoro Y, Ghiso J, Thornton J (2008) Human chorionic gonadotropin (a luteinizing hormone homologue) decreases spatial memory and increases brain amyloid-β levels in female rats. Horm Behav 54:143–152

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Birukova AA, Birukov KG, Smurova K, Adyshev D, Kaibuchi K, Alieva I, Garcia JG, Verin AD (2004) Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J 18:1879–1890

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. Bogovyk R, Lunko O, Fedoriuk M, Isaev D, Krishtal O, Holmes GL, Isaeva E (2017) Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus. Epilepsy Behav 67:66–69

    PubMed  Article  PubMed Central  Google Scholar 

  13. Bromley-Brits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. JoVE (Journal of Visualized Experiments): e2920

  14. Burwell RD, Saddoris MP, Bucci DJ, Wiig KA (2004) Corticohippocampal contributions to spatial and contextual learning. J Neurosci 24:3826–3836

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Chen L, Yamada K, Nabeshima T, Sokabe M (2006) α7 nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in β-amyloid infused rats. Neuropharmacology 50:254–268

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Choi MS, Kim YE, Lee WJ, Choi JW, Park GH, Kim SD, Jeon SJ, Go HS, Shin SM, Kim W-K (2008) Activation of protease-activated receptor1 mediates induction of matrix metalloproteinase-9 by thrombin in rat primary astrocytes. Brain Res Bull 76:368–375

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Chong YH, Jung JM, Choi W, Park CW, Choi KS, Suh Y-H (1994) Bacterial expression, purification of full length and carboxyl terminal fragment of Alzheimer amyloid precursor protein and their proteolytic processing by thrombin. Life Sci 54:1259–1268

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Ciallella JR, Figueiredo H, Smith-Swintosky V, McGillis JP (1999) Thrombin induces surface and intracellular secretion of amyloid precursor protein from human endothelial cells. Thromb Haemost 81:630–637

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Denninger JK, Smith BM, Kirby ED (2018) Novel object recognition and object location behavioral testing in mice on a budget. JoVE (Journal of Visualized Experiments): e58593

  20. Doyle E, Bruce MT, Breen KC, Smith DC, Anderton B, Regan CM (1990) Intraventricular infusions of antibodies to amyloid-β-protein precursor impair the acquisition of a passive avoidance response in the rat. Neurosci Lett 115:97–102

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Drummond E, Wisniewski T (2017) Alzheimer’s disease: experimental models and reality. Acta Neuropathol 133:155–175

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Ennaceur A, Meliani K (1992) A new one-trial test for neurobiological studies of memory in rats. III. Spatial vs. non-spatial working memory. Behav Brain Res 51:83–92

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Eskandari-Roozbahani N, Shomali T, Taherianfard M (2019) Neuroprotective effect of Zataria multiflora essential oil on rats with Alzheimer disease: a mechanistic study. Basic Clin Neurosci 10:85

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Esmaeilpour K, Sheibani V, Shabani M, Mirnajafi-Zadeh J (2017) Effect of low frequency electrical stimulation on seizure-induced short-and long-term impairments in learning and memory in rats. Physiol Behav 168:112–121

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Garcia J (2009) Concepts in microvascular endothelial barrier regulation in health and disease. Microvasc Res 77:1–3

    PubMed  Article  PubMed Central  Google Scholar 

  27. Ghasemi T, Sohanaki H, Keshavarz M, Ghasemi E, Parviz M (2017) Low dose Teucrium polium hydro-alcoholic extract treatment effects on spatial memory and hippocampal neuronal count of rat Aβ25-35 model of Alzheimer’s disease. Arch Neurosci 6(3):90893

  28. Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF (2000) Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20:4582–4595

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Grammas P, Samany PG, Thirumangalakudi L (2006) Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: implications for disease pathogenesis. J Alzheimers Dis 9:51–58

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Granic I, Nyakas C, Luiten PG, Eisel UL, Halmy LG, Gross G, Schoemaker H, Möller A, Nimmrich V (2010) Calpain inhibition prevents amyloid-β-induced neurodegeneration and associated behavioral dysfunction in rats. Neuropharmacology 59:334–342

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Guan J-x, Sun S-g, Cao X-b, Chen Z-B, Tong E-t (2004) Effect of thrombin on blood brain barrier permeability and its mechanism. Chin Med J 117:1677–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamill CE, Caudle WM, Richardson JR, Yuan H, Pennell KD, Greene JG, Miller GW, Traynelis SF (2007) Exacerbation of dopaminergic terminal damage in a mouse model of Parkinson’s disease by the G protein-coupled receptor protease-activated receptor 1. Mol Pharmacol 72:653–664

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Hamill CE, Mannaioni G, Lyuboslavsky P, Sastre AA, Traynelis SF (2009) Protease-activated receptor 1-dependent neuronal damage involves NMDA receptor function. Exp Neurol 217:136–146

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Han K-S, Mannaioni G, Hamill CE, Lee J, Junge CE, Lee CJ, Traynelis SF (2011) Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain 4:1–12

    Article  CAS  Google Scholar 

  35. He F-Q, Qiu B-Y, Zhang X-H, Li T-K, Xie Q, Cui D-J, Huang X-L, Gan H-T (2011) Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer’s disease induced by amyloid-β (1–42). Brain Res 1384:89–96

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. He Y, Zheng M-M, Ma Y, Han X-J, Ma X-Q, Qu C-Q, Du Y-F (2012) Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem Biophys Res Commun 429:125–130

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Huang C-F, Li G, Ma R, Sun S-G, Chen J-G (2008) Thrombin-induced microglial activation contributes to the degeneration of nigral dopaminergic neurons in vivo. Neurosci Bull 24:66–72

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Igarashi K, Murai H, J-i A (1992) Proteolytic processing of amyloid β protein precursor (APP) by thrombin. Biochem Biophys Res Commun 185:1000–1004

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Isaev D, Lushnikova I, Lunko O, Zapukhliak O, Maximyuk O, Romanov A, Skibo G, Tian C, Holmes G, Isaeva E (2015) Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol Dis 78:68–76

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Isaeva E, Hernan A, Isaev D, Holmes GL (2012) Thrombin facilitates seizures through activation of persistent sodium current. Ann Neurol 72:192–198

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Kubota T, Matsumoto H, Kirino Y (2016) Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer’s disease. J Pharmacol Sci 131:219–222

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Kunešová G, Hlaváček J, Patočka J, Evangelou A, Zikos C, Benaki D, Paravatou-Petsotas M, Pelecanou M, Livaniou E, Slaninova J (2008) The multiple T-maze in vivo testing of the neuroprotective effect of human in analogues. Peptides 29:1982–1987

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  43. Lee CJ, Mannaioni G, Yuan H, Woo DH, Gingrich MB, Traynelis SF (2007) Astrocytic control of synaptic NMDA receptors. J Physiol 581:1057–1081

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Li X, Bao X, Wang R (2016) Experimental models of Alzheimer’s disease for deciphering the pathogenesis and therapeutic screening. Int J Mol Med 37:271–283

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Li J, Wang C, Zhang JH, Cai J-M, Cao Y-P, Sun X-J (2010) Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res 1328:152–161

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. JoVE (Journal of Visualized Experiments): e55718

  47. Maggio N, Shavit E, Chapman J, Segal M (2008) Thrombin induces long-term potentiation of reactivity to afferent stimulation and facilitates epileptic seizures in rat hippocampal slices: toward understanding the functional consequences of cerebrovascular insults. J Neurosci 28:732–736

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Moghaddam AH, Zare M (2018) Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed Pharmacother 97:1096–1101

    Article  CAS  Google Scholar 

  49. Morris RG (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  50. Navabi SP, Sarkaki A, Mansouri E, Badavi M, Ghadiri A, Farbood Y (2018) The effects of betulinic acid on neurobehavioral activity, electrophysiology and histological changes in an animal model of the Alzheimer’s disease. Behav Brain Res 337:99–106

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. NISHINO A, SUZUKI M, OHTANI H, MOTOHASHI O, UMEZAWA K, NAGURA H, YOSHIMOTO T (1993) Thrombin may contribute to the pathophysiology of central nervous system injury. J Neurotrauma 10:167–179

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard cover edition. Elsevier

  53. Pompili E, Nori SL, Geloso MC, Guadagni E, Corvino V, Michetti F, Fumagalli L (2004) Trimethyltin-induced differential expression of PAR subtypes in reactive astrocytes of the rat hippocampus. Mol Brain Res 122:93–98

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Rajizadeh MA, Esmaeilpour K, Haghparast E, Ebrahimi MN, Sheibani V (2020) Voluntary exercise modulates learning & memory and synaptic plasticity impairments in sleep deprived female rats. Brain Res 1729:146598

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Rajizadeh MA, Esmaeilpour K, Masoumi-Ardakani Y, Bejeshk MA, Shabani M, Nakhaee N, Ranjbar MP, Borzadaran FM, Sheibani V (2018) Voluntary exercise impact on cognitive impairments in sleep-deprived intact female rats. Physiol Behav 188:58–66

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. Rajizadeh MA, Sheibani V, Bejeshk MA, Mohtashami Borzadaran F, Saghari H, Esmaeilpour K (2019) The effects of high intensity exercise on learning and memory impairments followed by combination of sleep deprivation and demyelination induced by ethidium bromide. Int J Neurosci 129:1166–1178

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Rao HV, Thirumangalakudi L, Desmond P, Grammas P (2007) Cyclin D1, cdk4, and Bim are involved in thrombin-induced apoptosis in cultured cortical neurons. J Neurochem 101:498–505

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. Robinson JL, Geser F, Corrada MM, Berlau DJ, Arnold SE, Lee VM-Y, Kawas CH, Trojanowski JQ (2011) Neocortical and hippocampal amyloid-β and tau measures associate with dementia in the oldest-old. Brain 134:3708–3715

    PubMed  Article  PubMed Central  Google Scholar 

  59. Saadati H, Sheibani V, Esmaeili-Mahani S, Hajali V, Mazhari S (2014) Prior regular exercise prevents synaptic plasticity impairment in sleep deprived female rats. Brain Res Bull 108:100–105

    PubMed  Article  PubMed Central  Google Scholar 

  60. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein: impair synaptic plasticity and behavior synaptic plasticity and the mechanism of Alzheimer’s disease. Springer, pp 89-102

  62. Semenikhina M, Bogovyk R, Fedoriuk M, Nikolaienko O, Al Kury LT, Savotchenko A, Krishtal O, Isaeva E (2019) Inhibition of protease-activated receptor 1 ameliorates behavioral deficits and restores hippocampal synaptic plasticity in a rat model of status epilepticus. Neurosci Lett 692:64–68

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. Sipos E, Kurunczi A, Kasza A, Horváth J, Felszeghy K, Laroche S, Toldi J, Parducz A, Penke B, Penke Z (2007) β-Amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer’s disease. Neuroscience 147:28–36

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. Smirnov A, Trupp A, Henkel A, Bloch E, Reulbach U, Lewczuk P, Riggert J, Kornhuber J, Wiltfang J (2009) Differential processing and secretion of Aβ peptides and sAPPα in human platelets is regulated by thrombin and prostaglandine 2. Neurobiol Aging 30:1552–1562

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. Smith-Swintosky VL, Zimmer S, Fenton JW, Mattson MP (1995) Opposing actions of thrombin and protease nexin-1 on amyloid β-peptide toxicity and on accumulation of peroxides and calcium in hippocampal neurons. J Neurochem 65:1415–1418

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. Soh UJ, Dores MR, Chen B, Trejo J (2010) Signal transduction by protease-activated receptors. Br J Pharmacol 160:191–203

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Sokolova E, Reiser G (2008) Prothrombin/thrombin and the thrombin receptors PAR-1 and PAR-4 in the brain: localization, expression and participation in neurodegenerative diseases. Thromb Haemost 100:576–581

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. Srivareerat M, Tran TT, Alzoubi KH, Alkadhi KA (2009) Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in β-amyloid rat model of Alzheimer’s disease. Biol Psychiatry 65:918–926

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA (2011) Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol Aging 32:834–844

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. Stepanichev MY, Zdobnova IM, Zarubenko II, Moiseeva YV, Lazareva NA, Onufriev MV, Gulyaeva NV (2004) Amyloid-β (25–35)-induced memory impairments correlate with cell loss in rat hippocampus. Physiol Behav 80:647–655

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. Striggow F, Riek-Burchardt M, Kiesel A, Schmidt W, Henrich-Noack P, Breder J, Krug M, Reymann KG, Reiser G (2001) Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur J Neurosci 14:595–608

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. Suo Z, Wu M, Citron BA, Palazzo RE, Festoff BW (2003) Rapid tau aggregation and delayed hippocampal neuronal death induced by persistent thrombin signaling. J Biol Chem 278:37681–37689

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. Traynelis SF, Trejo J (2007) Protease-activated receptor signaling: new roles and regulatory mechanisms. Curr Opin Hematol 14:230–235

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. Wang ZJ, Han WN, Yang GZ, Yuan L, Liu XJ, Li QS, Qi JS (2014) The neuroprotection of Rattin against amyloid β peptide in spatial memory and synaptic plasticity of rats. Hippocampus 24:44–53

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  75. Wang X, Li L, Hölscher C, Pan Y, Chen X, Qi J (2010) Val8-glucagon-like peptide-1 protects against Aβ1–40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats. Neuroscience 170:1239–1248

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. Yamaguchi Y, Kawashima S (2001) Effects of amyloid-β-(25–35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J Pharmacol 412:265–272

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. Yang J-n, Chen J, Xiao M (2017) A protease-activated receptor 1 antagonist protects against global cerebral ischemia/reperfusion injury after asphyxial cardiac arrest in rabbits. Neural Regen Res 12:242

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Yokono Y, Kenji H, Masato N, Yota T (2020) Blockade of PAR-1 signaling attenuates cardiac hypertrophy and fibrosis in renin overexpressing hypertensive mice. J Am Heart Assoc 9:119

    Article  Google Scholar 

  79. Zamani E, Parviz M, Roghani M, Mohseni-moghaddam P (2019) Key mechanisms underlying netrin-1 prevention of impaired spatial and object memory in Aβ1-42 CA1-injected rats. Clin Exp Pharmacol Physiol 46:86–93

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. Zhu W-J, Yamanaka H, Obata K, Dai Y, Kobayashi K, Kozai T, Tokunaga A, Noguchi K (2005) Expression of mRNA for four subtypes of the proteinase-activated receptor in rat dorsal root ganglia. Brain Res 1041:205–211

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Khadijeh Esmaeilpour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zare, D., Rajizadeh, M.A., Maneshian, M. et al. Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive performance and synaptic plasticity impairments in animal model of Alzheimer’s diseases. Psychopharmacology (2021). https://doi.org/10.1007/s00213-021-05798-8

Download citation

Keywords

  • Alzheimer’s diseases
  • Hippocampus CA1
  • Protease-activated receptors 1
  • Learning and memory