The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures

Abstract

Rationale

Effort-based decision-making tasks allow animals to choose between preferred reinforcers that require high effort to obtain vs. low-effort/low reward options. Mesolimbic dopamine (DA) and related neural systems regulate effort-based choice. Tetrabenazine (TBZ) is a vesicular monoamine transport type-2 inhibitor that blocks DA storage and depletes DA. In humans, TBZ induces motivational dysfunction and depression. TBZ has been shown reliably to induce a low-effort bias in rats, but there are fewer mouse studies.

Objectives

The present studies used touchscreen operant procedures (Bussey-Saksida chambers) to assess the effects of TBZ on effort-based choice in mice.

Methods

C57BL6 mice were trained to press an elevated lit panel on the touchscreen on a fixed ratio 1 schedule reinforced by strawberry milkshake, vs. approaching and consuming a concurrently available but less preferred food pellets (Bio-serv).

Results

TBZ (2.0–8.0 mg/kg IP) shifted choice, producing a dose-related decrease in panel pressing but an increase in pellet intake. In contrast, reinforcer devaluation by pre-feeding substantially decreased both panel pressing and pellet intake. In free-feeding choice tests, mice strongly preferred the milkshake vs. the pellets, and TBZ had no effect on milkshake intake or preference, indicating that the TBZ-induced low-effort bias was not due to changes in primary food motivation or preference. TBZ significantly decreased tissue levels of nucleus accumbens DA.

Conclusion

The DA depleting agent TBZ induced an effort-related motivational dysfunction in mice, which may have clinical relevance for assessing novel drug targets for their potential use as therapeutic agents in patients with motivation impairments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bailey MR, Chun E, Schipani E, Balsam PD, Simpson EH (2020) Dissociating the effects of dopamine D2 receptors on effort-based versus value-based decision making using a novel behavioral approach. Behav Neurosci 134(2):101–118

    PubMed  Google Scholar 

  2. Bryce CA, Floresco SB (2016) Perturbations in effort-related decision-making driven by acute stress and corticotropin-releasing factor. Neuropsychopharmacology 41(8):2147–2159

  3. Cagniard B, Balsam PD, Brunner D, Zhuang X (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31:1362–1370

    CAS  PubMed  Google Scholar 

  4. Carratalá-Ros C, López-Cruz L, SanMiguel N, Ibáñez-Marín P, Martínez-Verdú A, Salamone JD, Correa M (2020) Preference for exercise vs. more sedentary reinforcers: validation of an animal model of tetrabenazine-induced anergia. Front Behav Neurosci 13:289

    PubMed  PubMed Central  Google Scholar 

  5. Chen JJ, Ondo WG, Dashtipour K, Swope DM (2012) Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther. 34:1487–1504

    PubMed  Google Scholar 

  6. Cocker PJ, Hosking JG, Benoit J, Winstanley CA (2012) Sensitivity to cognitive effort mediates psychostimulant effects on a novel rodent cost/benefit decision-making task. Neuropsychopharmacology 37(8):1825–1837

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooper JA, Tucker VL, and Papakostas GI (2014) Resolution of sleepiness and fatigue: a comparison of bupropion and selective serotonin reuptake inhibitors in subjects with major depressive disorder achieving remission at doses approved in the European Union. J Psychopharmacol 28:118–124

  8. Correa M, SanMiguel N, López-Cruz L, Carratalá-Ros C, Olivares-García R, Salamone JD (2018) Caffeine modulates food intake depending on the context that gives access to food: comparison with dopamine depletion. Front Psychiatry 9:1–11

    CAS  Google Scholar 

  9. Correa M, Pardo M, Carratalá-Ros C, Martínez-Verdú A, Salamone JD (2020) Preference for vigorous exercise versus sedentary sucrose drinking: an animal model of anergia induced by dopamine receptor antagonism. Behav Pharmacol. https://doi.org/10.1097/FBP.0000000000000556 Publish Ahead of Print

  10. Cousins MS, Sokolowski JD, Salamone JD (1993) Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacol Biochem Behav 46(4):943–951

    CAS  PubMed  Google Scholar 

  11. Cousins MS, Atherton A, Turner L, Salamone JD (1996) Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behav Brain Res 74(1-2):189–197

    CAS  PubMed  Google Scholar 

  12. Culbreth AJ, Moran EK, Barch DM (2018a) Effort-cost decision-making in psychosis and depression: could a similar behavioral deficit arise from disparate psychological and neural mechanisms? Psychol Med 48:889–904

    CAS  PubMed  Google Scholar 

  13. Culbreth AJ, Moran EK, Barch DM (2018b) Effort-based decision-making in schizophrenia. Curr Opin Behav Sci 22:1–6

    PubMed  Google Scholar 

  14. Farrar AM, Segovia KN, Randall PA, Nunes EJ, Collins LE, Stopper CM, Port RG, Hockemeyer J, Müller CE, Correa M, Salamone JD (2010) Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A 2A and dopamine D 2 receptors. Neuroscience 166:1056–1067

    CAS  PubMed  Google Scholar 

  15. Fava M, Ball S, Nelson JC, Sparks J, Konechnik T, Classi P, Dube S, Thase ME (2014) Clinical relevance of fatigue as a residual symptom in major depressive disorder. Depress Anxiety 31:250–257

    PubMed  Google Scholar 

  16. Filla I, Bailey MR, Schipani E, Winiger V, Mezias C, Balsam PD, Simpson EH (2018) Striatal dopamine D2 receptors regulate effort but not value-based decision making and alter the dopaminergic encoding of cost. Neuropsychopharmacology 43(11):2180–2189

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Floresco SB, Ghods-Sharifi S (2007) Amygdala-prefrontal contrical circuitry regulates effort-based decision making. Cereb Cortex 17(2):251–260

    PubMed  Google Scholar 

  18. Floresco SB, Tse MTL, Ghods-Sharifi S (2008) Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology 33:1966–1979

    CAS  PubMed  Google Scholar 

  19. Frank S (2009) Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. Huntington Study Group/TETRA-HD Investigators. BMC Neurol 9:1–10

    Google Scholar 

  20. Frank S (2010) Tetrabenazine: the first approved drug for the treatment of chorea in US patients with Huntington disease. Neuropsychiatr Dis Treat:657

  21. Guay DRP (2010) Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinetic movement disorders. Am J Geriatr Pharmacother 8:331–373

    CAS  PubMed  Google Scholar 

  22. Gullion CM, Rush AJ (1998) Toward a generalizable model of symptoms in major depressive disorder. Biol Psychiatry 44(10):959–972

    CAS  PubMed  Google Scholar 

  23. Hauber W, Sommer S (2009) Prefrontostriatal circuitry regulates effort-related decision making. Cereb Cortex 19(10):2240–2247

    PubMed  Google Scholar 

  24. Heath CJ, Bussey TJ, Saksida LM (2015) Motivational assessment of mice using the touchscreen operant testing system: effects of dopaminergic drugs. Psychopharmacology (Berl) 232:4043–4057

    CAS  Google Scholar 

  25. Jankovic J, Clarence-Smith K (2011) Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders. Expert Rev Neurother 11:1509–1523

    CAS  PubMed  Google Scholar 

  26. Keppel G (1991) Design and analysis: A researcher’s handbook, 3rd edn. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  27. Lohr KM, Chen M, Hoffman CA, McDaniel MJ, Stout KA, Dunn AR, Wang M, Bernstein AI, Miller GW (2016) Vesicular monoamine transporter 2 (VMAT2) level regulates MPTP vulnerability and clearance of excess dopamine in mouse striatal terminals. Toxicol Sci 153:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  28. López-Cruz L, Pardo M, Salamone JD, Correa M (2014) Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: studies using medium to high doses in animal models. Behav Brain Res 270:213–222

    PubMed  Google Scholar 

  29. López-Cruz L, San Miguel N, Carratalá-Ros C, Monferrer L, Salamone JD, Correa M (2018) Dopamine depletion shifts behavior from activity based reinforcers to more sedentary ones and adenosine receptor antagonism reverses that shift: relation to ventral striatum DARPP32 phosphorylation patterns. Neuropharmacology 138:349–359

    PubMed  Google Scholar 

  30. Mai B, Sommer S, Hauber W (2012) Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens. Cogn Affect Behav Neurosci 12:74–84

    PubMed  Google Scholar 

  31. Markou A, Salamone JD, Bussey TJ, Mar AC, Brunner D, Gilmour G, Balsam P (2013) Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia. Neurosci Biobehav Rev 37:2149–2165

    PubMed  Google Scholar 

  32. Münster A, Hauber W (2018) Medial orbitofrontal cortex mediates effort-related responding in rats. Cereb Cortex 28(12):4379–4389

    PubMed  Google Scholar 

  33. Münster A, Sommer S, Hauber W (2020) Dopamine D1 receptors in the medial orbitofrontal cortex support effort-related responding in rats. Eur Neuropsychopharmacology 32:136–141. https://doi.org/10.1016/j.euroneuro.2020.01.008

    CAS  Article  Google Scholar 

  34. Nunes EJ, Randall PA, Hart EE, Freeland C, Yohn SE, Baqi Y, Müller CE, López-Cruz L, Correa M, Salamone JD (2013) Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: implications for animal models of the motivational symptoms of depression. J Neurosci 33:19120–19130

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M (2012) Adenosine A 2A receptor antagonism and genetic deletion attenuate the effects of dopamine D 2 antagonism on effort-based decision making in mice. Neuropharmacology 62:2068–2077

    CAS  PubMed  Google Scholar 

  36. Petersén Å, Weydt P (2019) The psychopharmacology of Huntington disease. Handb Clin Neurol 165:179–189

    PubMed  Google Scholar 

  37. Pettibone DJ, Totaro JA, Pflueger AB (1984) Tetrabenazine-induced depletion of brain monoamines: characterization and interaction with selected antidepressants. Eur J Pharmacol 20:425–430

    Google Scholar 

  38. Randall PA, Pardo M, Nunes EJ, López Cruz L, Vemuri VK, Makriyannis A, Baqi Y, Müller CE, Correa M, Salamone JD (2012) Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences BeelerJA, ed. PLoS One 7:e47934

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Randall PA, Lee CA, Nunes EJ, Yohn SE, Nowak V, Khan B, Shah P, Pandit S, Vemuri VK, Makriyannis A, Baqi Y, Müller CE, Correa M, Salamone JD (2014) The VMAT-2 inhibitor tetrabenazine affects effort-related decision making in a progressive ratio/chow feeding choice task: reversal with antidepressant drugs deWitH, ed. PLoS One 9:e99320

    PubMed  PubMed Central  Google Scholar 

  40. Robles CF, Johnson AW (2017) Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor. Behav Brain Res 320:431–439

    CAS  PubMed  Google Scholar 

  41. Rothschild AJ, Raskin J, Wang CN, Marangell LB, Fava M (2014) The relationship between change in apathy and changes in cognition and functional outcomes in currently non-depressed SSRI-treated patients with major depressive disorder. Compr Psychiatry 55:1–10

    PubMed  Google Scholar 

  42. Rotolo RA, Dragacevic V, Kalaba P, Urban K, Zehl M, Roller A, Wackerlig J, Langer T, Pistis M, De Luca MA, Caria F, Schwartz R, Presby RE, Yang JH, Samels S, Correa M, Lubec G, Salamone JD (2019) The novel atypical dopamine uptake inhibitor (S)-CE-123 partially reverses the effort-related effects of the dopamine depleting agent tetrabenazine and increases progressive ratio responding. Front Pharm 10(682). https://doi.org/10.3389/fphar.2019.00682

  43. Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    CAS  PubMed  Google Scholar 

  44. Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology (Berl) 104:515–521

    CAS  Google Scholar 

  46. Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229

    CAS  PubMed  Google Scholar 

  47. Salamone J, Arizzi M, Sandoval M, Cervone K, Aberman J (2002) Dopamine antagonists alter response allocation but do not suppress appetite for food in rats: contrast between the effects of SKF 83566, raclopride, and fenfluramine on a concurrent choice task. Psychopharmacology (Berl) 160:371–380

    CAS  Google Scholar 

  48. Salamone J, Correa M, Mingote S, Weber S, Farrar A (2006) Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: implications for understanding anergia and psychomotor slowing in depression. Curr Psychiatry Rev 2:267–280

    Google Scholar 

  49. Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens (DA) and associated forebrain circuits. Psychopharmacology (Berl) 191:461–482

    CAS  Google Scholar 

  50. Salamone JD, Correa M, Nunes EJ, Randall PA, Pardo M (2012) The behavioral pharmacology of effort-related choice behavior: dopamine, adenosine and beyond. J Exp Anal Behav 97:125–146

    PubMed  PubMed Central  Google Scholar 

  51. Salamone JD, Correa M, Yohn S, Lopez Cruz L, San Miguel N, Alatorre L (2016a) The pharmacology of effort-related choice behavior: dopamine, depression, and individual differences. Behav Processes 127:3–17

    PubMed  Google Scholar 

  52. Salamone JD, Yohn SE, López-Cruz L, San Miguel N, Correa M (2016b) Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. Brain 139:1325–1347

    PubMed  PubMed Central  Google Scholar 

  53. Salamone JD, Yohn SE, Yang J, Somerville M, Rotolo RA, Presby RE (2017) Behavioral activation, effort-based choice, and elasticity of demand for motivational stimuli: Basic and translational neuroscience approaches. Motiv Sci 3:208–229

    Google Scholar 

  54. Salamone JD, Correa M, Ferrigno S, Yang J-H, Rotolo RA, Presby RE (2018a) The psychopharmacology of effort-related decision making: dopamine, adenosine, and insights into the neurochemistry of motivation. Pharmacol Rev 70:747–762

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Salamone JD, Correa M, Yang J-H, Rotolo R, Presby R (2018b) Dopamine, effort-based choice, and behavioral economics: basic and translational research. Front Behav Neurosci 12:1–13

    Google Scholar 

  56. SanMiguel N, Pardo M, Carratalá-Ros C, López-Cruz L, Salamone JD, Correa M (2018) Individual differences in the energizing effects of caffeine on effort-based decision-making tests in rats. Pharmacol Biochem Behav 169:27–34

    CAS  PubMed  Google Scholar 

  57. Sink KS, Vemuri VK, Olszewska T, Makriyannis A, Salamone JD (2008) Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology (Berl) 196:565–574

    CAS  Google Scholar 

  58. Stahl SM (2002) The Psychopharmacology of Energy and Fatigue. J Clin Psychiatry 63:7–8

    PubMed  Google Scholar 

  59. Tanra AJ, Kagaya A, Okamoto Y, Muraoka M, Motohashi N, Yamawaki S (1995) TJS-010, a new prescription of oriental medicine, antagonizes tetrabenazine-induced suppression of spontaneous locomotor activity in rats. Prog Neuropsychopharmacol Biol Psychiatry 19:963–971

    CAS  PubMed  Google Scholar 

  60. Todder D, Caliskan S, Baune BT (2009) Longitudinal changes of day-time and night-time gross motor activity in clinical responders and non-responders of major depression. World J Biol Psychiatry 10:276–284

    PubMed  Google Scholar 

  61. Treadway MT, Bossaller NA, Shelton RC, Zald DH (2012a) Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. J Abnorm Psychol 121:553–558

    PubMed  PubMed Central  Google Scholar 

  62. Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, Baldwin RM, Schwartzman AN, Kessler RM, Zald DH (2012b) Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci 32:6170–6176

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Trifilieff P, Feng B, Urizar E, Winiger V, Ward RD, Taylor KM, Martinez D, Moore H, Balsam PD, Simpson EH, Javitch JA (2013) Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry 18(9):1025–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tylee A, Gastpar M, Lépine JP, Mendlewicz J (1999) Identification of depressed patient types in the community and their treatment needs: findings from the DEPRES II (Depression Research in European Society II) survey. DEPRES Steering Committee. Int Clin Psychopharmacol 14:153–165

    CAS  PubMed  Google Scholar 

  65. Walton ME, Bannerman DM, Alterescu K, Rushworth MFS (2003) Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J Neurosci 23:6475–6479

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wimalasena K (2011) Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev 31:483–519

    CAS  PubMed  Google Scholar 

  67. Yang JH, Presby RE, Jarvie AA, Rotolo RA, Fitch RH, Correa M, Salamone JD (2020) Pharmacological studies of effort-related decision making using mouse touchscreen procedures: effects of dopamine antagonism do not resemble reinforcer devaluation by removal of food restriction. Psychopharmacology 237:33–43

    CAS  PubMed  Google Scholar 

  68. Yohn SE, Santerre JL, Nunes EJ, Kozak R, Podurgiel SJ, Correa M, Salamone JD (2015a) The role of dopamine D1 receptor transmission in effort-related choice behavior: effects of D1 agonists. Pharmacol Biochem Behav 135:217–226

    CAS  PubMed  Google Scholar 

  69. Yohn SE, Thompson C, Randall PA, Lee CA, Müller CE, Baqi Y, Correa M, Salamone JD (2015b) The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology (Berl) 232:1313–1323

    CAS  Google Scholar 

  70. Yohn SE, Collins SL, Contreras-Mora HM, Errante EL, Rowland MA, Correa M, Salamone JD (2016a) Not all antidepressants are created equal: differential effects of monoamine uptake inhibitors on effort-related choice behavior. Neuropsychopharmacology 41:686–694

    CAS  PubMed  Google Scholar 

  71. Yohn SE, Errante EE, Rosenbloom-Snow A, Somerville M, Rowland M, Tokarski K, Zafar N, Correa M, Salamone JD (2016b) Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: implications for treatment of effort-related motivational symptoms in psychopathology. Neuropharmacology 109:270–280

    CAS  PubMed  Google Scholar 

  72. Yohn SE, Gogoj A, Haque A, Lopez-Cruz L, Haley A, Huxley P, Baskin P, Correa M, Salamone JD (2016c) Evaluation of the effort-related motivational effects of the novel dopamine uptake inhibitor PRX-14040. Pharmacol Biochem Behav 148:84–91

    CAS  PubMed  Google Scholar 

  73. Yohn SE, Lopez-Cruz L, Hutson PH, Correa M, Salamone JD (2016d) Effects of lisdexamfetamine and s-citalopram, alone and in combination, on effort-related choice behavior in the rat. Psychopharmacology (Berl) 233:949–960

    CAS  Google Scholar 

  74. Yun J, Lee KW, Eom JH, Kim YH, Shin J, Han K, Park HK, Kim HS, Cha HJ (2017) Potential for dependence on lisdexamfetamine - in vivo and in vitro aspects. Biomol Ther 25:659–664

    CAS  Google Scholar 

  75. Zou YM, Ni K, Wang YY, Yu EQ, Lui SSY, Zhou FC, Yang HX, Cohen AS, Strauss GP, Cheung EFC, Chan RCK (2019) Effort-cost computation in a transdiagnostic psychiatric sample: differences among patients with schizophrenia, bipolar disorder, and major depressive disorder. Psych J 9:210–222. https://doi.org/10.1002/pchj.316

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Arsal Shah and Peter Perrino for their assistance with this manuscript.

Funding

This research was supported by a grant to RHF and JS from the University of Connecticut Tier II program that established the Murine Behavioral Neurogenetics Facility, the University of Connecticut Research Foundation (JS), and to MC from MINECO (PSI2015-68497-R) Spain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John D. Salamone.

Ethics declarations

Conflict of interest

JS has received grants from, and done consulting work for, Pfizer, Roche, Shire, Prexa, Chronos, Blackthorn, Lundbeck, and Acadia. All other author declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Presby, R.E., Rotolo, R.A. et al. The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures. Psychopharmacology (2020). https://doi.org/10.1007/s00213-020-05578-w

Download citation

Keywords

  • Motivation
  • Dopamine
  • Schizophrenia
  • Bussey-Saksida chambers
  • Panel pressing
  • Preference test