The retinoid X receptor: a nuclear receptor that modulates the sleep-wake cycle in rats

Abstract

Rationale

The nuclear receptor retinoid X receptor (RXR) belongs to a nuclear receptor superfamily that modulates diverse functions via homodimerization with itself or several other nuclear receptors, including PPARα. While the activation of PPARα by natural or synthetic agonists regulates the sleep-wake cycle, the role of RXR in the sleep modulation is unknown.

Objectives

We investigated the effects of bexarotene (Bexa, a RXR agonist) or UVI 3003 (UVI, a RXR antagonist) on sleep, sleep homeostasis, levels of neurochemical related to sleep modulation, and c-Fos and NeuN expression.

Methods

The sleep-wake cycle and sleep homeostasis were analyzed after application of Bexa or UVI. Moreover, we also evaluated whether Bexa or UVI could induce effects on dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine contents, collected from either the nucleus accumbens or basal forebrain. In addition, c-Fos and NeuN expression in the hypothalamus was determined after Bexa or UVI treatments.

Results

Systemic application of Bexa (1 mM, i.p.) attenuated slow-wave sleep and rapid eye movement sleep. In addition, Bexa increased the levels of dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine sampled from either the nucleus accumbens or basal forebrain. Moreover, Bexa blocked the sleep rebound period after total sleep deprivation, increased in the hypothalamus the expression of c-Fos, and decreased NeuN activity. Remarkably, UVI 3003 (1 mM, i.p.) induced opposite effects in sleep, sleep homeostasis, neurochemicals levels, and c-Fos and NeuN activity.

Conclusions

The administration of RXR agonist or antagonist significantly impaired the sleep-wake cycle and exerted effects on the levels of neurochemicals related to sleep modulation. Moreover, Bexa or UVI administration significantly affected c-Fos and NeuN expression in the hypothalamus. Our findings highlight the neurobiological role of RXR on sleep modulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. AlSudais H, Aabed K, Nicola W, Dixon K, Chen J, Li Q (2018) Retinoid X receptor-selective signaling in the regulation of Akt/protein kinase B isoform-specific expression. J Biol Chem 293:9139. https://doi.org/10.1074/jbc.AAC118.003993

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Anderzhanova E, Wotjak CT (2013) Brain microdialysis and its applications in experimental neurochemistry. Cell Tissue Res 354:27–39

    CAS  Article  Google Scholar 

  3. Arrigoni E, Chee MJS, Fuller PM (2019) To eat or to sleep: that is a lateral hypothalamic question. Neuropharmacol. 154:34–49. https://doi.org/10.1016/j.neuropharm.2018.11.017

    CAS  Article  Google Scholar 

  4. Barone R, Rizzo R, Tabbì G, Malaguarnera M, Frye RE, Bastin J (2019) Nuclear peroxisome proliferator-activated receptors (PPARs) as therapeutic targets of resveratrol for autism spectrum disorder. Int J Mol Sci 20:E1878. https://doi.org/10.3390/ijms20081878

    CAS  Article  PubMed  Google Scholar 

  5. Barros VN, Mundim M, Galindo LT, Bittencourt S, Porcionatto M, Mello LE (2015) The pattern of c-Fos expression and its refractory period in the brain of rats and monkeys. Front Cell Neurosci 9:72. https://doi.org/10.3389/fncel.2015.00072

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bartzokis G (2014) Inter-species glia differences: implications for successful translation of transgenic rodent Alzheimer’s disease model treatment using bexarotene. J Prev Alzheimers Dis 1:46–50. https://doi.org/10.14283/jpad.2014.20

    CAS  Article  PubMed  Google Scholar 

  7. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ (2006) Adenosine and sleep homeostasis in the basal forebrain. J Neurosci 26:8092–8100

    CAS  Article  Google Scholar 

  8. Casali BT, Reed-Geaghan EG, Landreth GE (2018) Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer’s disease. J Neuroinflammation 15:43. https://doi.org/10.1186/s12974-018-1091-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chen L, Yang G (2014) PPARs integrate the mammalian clock and energy metabolism. PPAR Res 2014:653017. https://doi.org/10.1155/2014/653017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Chitranshi N, Dheer Y, Kumar S, Graham SL, Gupta V (2019) Molecular docking, dynamics, and pharmacology studies on bexarotene as an agonist of ligand-activated transcription factors, retinoid X receptors. J Cell Biochem In press. https://doi.org/10.1002/jcb.28455

  11. Choi CI (2019) Astaxanthin as a peroxisome proliferator-activated receptor (ppar) modulator: its therapeutic implications. Mar Drugs 17(4):E242. https://doi.org/10.3390/md17040242

    CAS  Article  PubMed  Google Scholar 

  12. Clemens V, Regen F, Le Bret N, Heuser I, Hellmann-Regen J (2018) Anti-inflammatory effects of minocycline are mediated by retinoid signaling. BMC Neurosci 19:58. https://doi.org/10.1186/s12868-018-0460-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. de-la-Cruz M, Millán-Aldaco D, Soriano-Nava DM, Drucker-Colín R, Murillo-Rodríguez E (2018) The artificial sweetener Splenda intake promotes changes in expression of c-Fos and NeuN in hypothalamus and hippocampus of rats. Brain Res 1700:181–189. https://doi.org/10.1016/j.brainres.2018.09.006

    CAS  Article  PubMed  Google Scholar 

  14. Dheer Y, Chitranshi N, Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL, Gupta V (2018) Bexarotene modulates retinoid-X-receptor expression and is protective against neurotoxic endoplasmic reticulum stress response and apoptotic pathway activation. Mol Neurobiol 55:9043–9056. https://doi.org/10.1007/s12035-018-1041-9

    CAS  Article  PubMed  Google Scholar 

  15. Dheer Y, Chitranshi N, Gupta V, Sharma S, Pushpitha K, Abbasi M, Mirzaei M, You Y, Graham SL, Gupta V (2019) Retinoid x receptor modulation protects against ER stress response and rescues glaucoma phenotypes in adult mice. Exp Neurol 314:111–125. https://doi.org/10.1016/j.expneurol.2019.01.015

    CAS  Article  PubMed  Google Scholar 

  16. Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q (2016) Novel insights into NeuN: from neuronal marker to splicing regulator. Mol Neurobiol 53:1637–1647. https://doi.org/10.1007/s12035-015-9122-5

    CAS  Article  PubMed  Google Scholar 

  17. Eban-Rothschild A, Appelbaum L, de Lecea L (2018) Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacol. 43:937–952. https://doi.org/10.1038/npp.2017.294

    Article  Google Scholar 

  18. Fanaee-Danesh E, Gali CC, Tadic J, Zandl-Lang M, Carmen Kober A, Agujetas VR, de Dios C, Tam-Amersdorfer C, Stracke A, Albrecher NM, Manavalan APC, Reiter M, Sun Y, Colell A, Madeo F, Malle E, Panzenboeck U (2019) Astaxanthin exerts protective effects similar to bexarotene in Alzheimer’s disease by modulating amyloid-beta and cholesterol homeostasis in blood-brain barrier endothelial cells. Biochim Biophys Acta Mol basis Dis 1865:2224–2245. https://doi.org/10.1016/j.bbadis.2019.04.019

    CAS  Article  PubMed  Google Scholar 

  19. Farivar R, Zangenehpour S, Chaudhuri A (2004) Cellular-resolution activity mapping of the brain using immediate-early gene expression. Front Biosci 9:104–109

    CAS  Article  Google Scholar 

  20. Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV (2018) Immediate early genes, memory and psychiatric disorders: focus on c-Fos, Egr1 and Arc. Front Behav Neurosci 12:79. https://doi.org/10.3389/fnbeh.2018.00079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Geller S, Busam K, Hamlin PA, Moskowitz AJ, Horwitz SM, Myskowski PL (2019) Treatment of Rosai-Dorfman disease with oral bexarotene: a case series. J Dermatol Treat 30:503–505. https://doi.org/10.1080/09546634.2018.1528001

    CAS  Article  Google Scholar 

  22. Geoghegan D, Carter DA (2008) A novel site of adult doublecortin expression: neuropeptide neurons within the suprachiasmatic nucleus circadian clock. BMC Neurosci 9:2. https://doi.org/10.1186/1471-2202-9-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Grupe M, Paolone G, Jensen AA, Sandager-Nielsen K, Sarter M, Grunnet M (2013) Selective potentiation of (α4)3(β2)2 nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats. Biochem Pharmacol 86:1487–1496. https://doi.org/10.1016/j.bcp.2013.09.005

  24. Guleria RS, Singh AB, Nizamutdinova IT, Souslova T, Mohammad AA, Kendall JA Jr, Baker KM, Pan J (2013) Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats. J Mol Cell Cardiol 57:106–118. https://doi.org/10.1016/j.yjmcc.2013.01.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Gusel’nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Nat 7:42–47

    Article  Google Scholar 

  26. Hammarlund-Udenaes M (2017) Microdialysis as an important technique in systems pharmacology-a historical and methodological review. AAPS J 19:1294–1303. https://doi.org/10.1208/s12248-017-0108-2

    CAS  Article  PubMed  Google Scholar 

  27. He J, Liu H, Zhong J, Guo Z, Wu J, Zhang H, Huang Z, Jiang L, Li H, Zhang Z, Liu L, Wu Y, Qi L, Sun X, Cheng C (2018) Bexarotene protects against neurotoxicity partially through a PPARγ-dependent mechanism in mice following traumatic brain injury. Neurobiol Dis 117:114–124. https://doi.org/10.1016/j.nbd.2018.06.003

    CAS  Article  PubMed  Google Scholar 

  28. Hebert SL, Fitzpatrick KR, McConnell SA, Cucak A, Yuan C, McLoon LK (2017) Effects of retinoic acid signaling on extraocular muscle myogenic precursor cells in vitro. Exp Cell Res 361:101–111. https://doi.org/10.1016/j.yexcr.2017.10.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Hight K, Hallett H, Churchill L, De A, Boucher A, Krueger JM (2010) Time of day differences in the number of cytokine-, neurotrophin- and NeuN-immunoreactive cells in the rat somatosensory or visual cortex. Brain Res 1337:32–40. https://doi.org/10.1016/j.brainres.2010.04.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Huang J, Liu F, Wang B, Tang H, Teng Z, Li L, Qiu Y, Wu H, Chen J (2019) Central and peripheral changes in FOS expression in schizophrenia based on genome-wide gene expression. Front Genet 10:232. https://doi.org/10.3389/fgene.2019.00232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Huang SH, Zhang J, Li Y, Rong J, Wu ZK (2013) Time delay of microdialysis in vitro. N Am J Med Sci 5:149–152. https://doi.org/10.4103/1947-2714.107540

    Article  PubMed  PubMed Central  Google Scholar 

  32. Iovino M, Messana T, De Pergola G, Iovino E, Guastamacchia E, Giagulli VA, Triggiani V (2019) Vigilance states: central neural pathways, neurotransmitters and neurohormones. Endocr Metab Immune Disord Drug Targets 19:26–37. https://doi.org/10.2174/1871530318666180816115720

    CAS  Article  PubMed  Google Scholar 

  33. Jaworski J, Kalita K, Knapska E (2018) c-Fos and neuronal plasticity: the aftermath of Kaczmarek’s theory. Acta Neurobiol Exp (Wars) 78:287–296

    Google Scholar 

  34. Jones BE (2019) Arousal and sleep circuits. Neuropsychopharmacol. 45:6–20. https://doi.org/10.1038/s41386-019-0444-2

    CAS  Article  Google Scholar 

  35. Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116:260–272. https://doi.org/10.1111/j.1471-4159.2010.07100.x

    CAS  Article  PubMed  Google Scholar 

  36. Kho CM, Enche Ab Rahim SK, Ahmad ZA, Abdullah NS (2017) A review on microdialysis calibration methods: the theory and current related efforts. Mol Neurobiol 54:3506–3527. https://doi.org/10.1007/s12035-016-9929-8

    CAS  Article  PubMed  Google Scholar 

  37. Kitaoka K, Shimizu M, Shimizu N, Chikahisa S, Nakagomi M, Shudo K, Yoshizaki K, Séi H (2011) Retinoic acid receptor antagonist LE540 attenuates wakefulness via the dopamine D1 receptor in mice. Brain Res 1423:10–16. https://doi.org/10.1016/j.brainres.2011.09.023

    CAS  Article  PubMed  Google Scholar 

  38. Kojetin DJ, Matta-Camacho E, Hughes TS, Srinivasan S, Nwachukwu JC, Cavett V, Nowak J, Chalmers MJ, Marciano DP, Kamenecka TM, Shulman AI, Rance M, Griffin PR, Bruning JB, Nettles KW (2015) Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Nat Commun 6:8013. https://doi.org/10.1038/ncomms9013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Kondo Y, Chikahisa S, Shiuchi T, Shimizu N, Tanioka D, Uguisu H, Séi H (2020) Sleep profile during fasting in PPAR-alpha knockout mice. Physiol Behav 214:112760. https://doi.org/10.1016/j.physbeh.2019.112760

    CAS  Article  PubMed  Google Scholar 

  40. Kou X, Chen G, Huang S, Ye Y, Ouyang G, Gan J, Zhu F (2019) In vivo sampling: a promising technique for detecting and profiling endogenous substances in living systems. J Agric Food Chem 67:2120–2126. https://doi.org/10.1021/acs.jafc.8b06981

    CAS  Article  PubMed  Google Scholar 

  41. Kovács KJ (2008) Measurement of immediate-early gene activation- c-fos and beyond. J Neuroendocrinol 20:665–672. https://doi.org/10.1111/j.1365-2826.2008.01734.x

    CAS  Article  PubMed  Google Scholar 

  42. Krężel W, Rühl R, de Lera AR (2019) Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 491:110436. https://doi.org/10.1016/j.mce.2019.04.016

    CAS  Article  PubMed  Google Scholar 

  43. Krzyzosiak A, Szyszka-Niagolov M, Wietrzych M, Gobaille S, Muramatsu S, Krezel W (2010) Retinoid x receptor gamma control of affective behaviors involves dopaminergic signaling in mice. Neuron. 66:908–920. https://doi.org/10.1016/j.neuron.2010.05.004

    CAS  Article  PubMed  Google Scholar 

  44. Laleh P, Yaser K, Alireza O (2019) Oleoylethanolamide: a novel pharmaceutical agent in the management of obesity-an updated review. J Cell Physiol 234:7893–7902. https://doi.org/10.1002/jcp.27913

    CAS  Article  PubMed  Google Scholar 

  45. Lefebvre P, Benomar Y, Staels B (2010) Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab 21:676–683. https://doi.org/10.1016/j.tem.2010.06.009

    CAS  Article  PubMed  Google Scholar 

  46. Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S (2019) Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: potential novel targets for treatment. J Steroid Biochem Mol Biol 190:104–114. https://doi.org/10.1016/j.jsbmb.2019.03.003

    CAS  Article  PubMed  Google Scholar 

  47. Martin N, Ma X, Bernard D (2019) Regulation of cellular senescence by retinoid X receptors and their partners. Mech Ageing Dev 111131. https://doi.org/10.1016/j.mad.2019.111131

  48. Martínez C, Souto JA, de Lera AR (2019) Ligand Design for Modulation of RXR functions. Methods Mol Biol 2019:51–72. https://doi.org/10.1007/978-1-4939-9585-1_4

    CAS  Article  PubMed  Google Scholar 

  49. McFarland K, Spalding TA, Hubbard D, Ma JN, Olsson R, Burstein ES (2013) Low dose bexarotene treatment rescues dopamine neurons and restores behavioral function in models of Parkinson’s disease. ACS Chem Neurosci 4:1430–1438. https://doi.org/10.1021/cn400100f

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Mengeling BJ, Goodson ML, Furlow JD (2018) RXR ligands modulate thyroid hormone signaling competence in young Xenopus laevis tadpoles. Endocrinol. 159:2576–2595. https://doi.org/10.1210/en.2018-00172

    CAS  Article  Google Scholar 

  51. Mijangos-Moreno S, Poot-Aké A, Guzmán K, Arankowsky-Sandoval G, Arias-Carrión O, Zaldívar-Rae J, Sarro-Ramírez A, Murillo-Rodríguez E (2016) Sleep and neurochemical modulation by the nuclear peroxisome proliferator-activated receptor α (PPAR-α) in rat. Neurosci Res 105:65–69. https://doi.org/10.1016/j.neures.2015.09.005

    CAS  Article  PubMed  Google Scholar 

  52. Mirza AZ, Althagafi II, Shamshad H (2019) Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem 166:502–513. https://doi.org/10.1016/j.ejmech.2019.01.067

    CAS  Article  PubMed  Google Scholar 

  53. Murillo-Rodríguez E, Arankowsky-Sandoval G, Barros JA, Rocha NB, Yamamoto T, Machado S, Budde H, Telles-Correia D, Monteiro D, Cid L, Veras AB (2019) Sleep and neurochemical modulation by DZNep and GSK-J1: potential link with histone methylation status. Front Neurosci 13:237. https://doi.org/10.3389/fnins.2019.00237

    Article  PubMed  PubMed Central  Google Scholar 

  54. Murillo-Rodríguez E, Arankowsky-Sandoval G, Rocha NB, Peniche-Amante R, Veras AB, Machado S, Budde H (2018) Systemic injections of cannabidiol enhance acetylcholine levels from basal forebrain in rats. Neurochem Res 43:1511–1518. https://doi.org/10.1007/s11064-018-2565-0

    CAS  Article  PubMed  Google Scholar 

  55. Murillo-Rodríguez E, Di Marzo V, Machado S, Rocha NB, Veras AB, Neto GAM, Budde H, Arias-Carrión O, Arankowsky-Sandoval G (2017) Role of N-arachidonoyl-serotonin (AA-5-HT) in sleep-wake cycle architecture, sleep homeostasis, and neurotransmitters regulation. Front Mol Neurosci 10:152. https://doi.org/10.3389/fnmol.2017.00152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Murillo-Rodríguez E, Guzmán K, Arankowsky-Sandoval G, Salas-Crisóstomo M, Jiménez-Moreno R, Arias-Carrión O (2016) Evidence that activation of nuclear peroxisome proliferator-activated receptor alpha (PPARα) modulates sleep homeostasis in rats. Brain Res Bull 127:156–163. https://doi.org/10.1016/j.brainresbull.2016.09.007

    CAS  Article  PubMed  Google Scholar 

  57. Murillo-Rodriguez E (2017) The role of nuclear receptor PPARα in the sleep-wake cycle modulation. A tentative approach for treatment of sleep disorders. Curr Drug Deliv 14:473–482. https://doi.org/10.2174/1567201814666161109123803

    CAS  Article  PubMed  Google Scholar 

  58. Murillo-Rodríguez E, Blanco-Centurión C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ (2004) The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neurosci. 123:361–370

    Article  Google Scholar 

  59. Nam KN, Mounier A, Fitz NF, Wolfe C, Schug J, Lefterov I, Koldamova R (2016) RXR controlled regulatory networks identified in mouse brain counteract deleterious effects of Aβ oligomers. Sci Rep 6:24048. https://doi.org/10.1038/srep24048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, San Diego, California

  61. Perrin-Terrin AS, Jeton F, Pichon A, Frugière A, Richalet JP, Bodineau L, Voituron N (2016) The c-FOS protein immunohistological detection: a useful tool as a marker of central pathways involved in specific physiological responses in vivo and ex vivo. J Vis Exp:110. https://doi.org/10.3791/53613

  62. Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neurosci. 99:507–517

    CAS  Article  Google Scholar 

  63. Schierle S, Merk D (2019) Therapeutic modulation of retinoid X receptors - SAR and therapeutic potential of RXR ligands and recent patents. Expert Opin Ther Pat 29:605–621. https://doi.org/10.1080/13543776.2019.1643322

    CAS  Article  PubMed  Google Scholar 

  64. Sharma R, Sahota P, Thakkar MM (2017) Lesion of the basal forebrain cholinergic neurons attenuates sleepiness and adenosine after alcohol consumption. J Neurochem 142:710–720. https://doi.org/10.1111/jnc.14054

    CAS  Article  PubMed  Google Scholar 

  65. Simandi Z, Horvath A, Cuaranta-Monroy I, Sauer S, Deleuze JF, Nagy L (2018) RXR heterodimers orchestrate transcriptional control of neurogenesis and cell fate specification. Mol Cell Endocrinol 471:51–62. https://doi.org/10.1016/j.mce.2017.07.033

    CAS  Article  PubMed  Google Scholar 

  66. Tu L, Yang XL, Zhang Q, Wang Q, Tian T, Liu D, Qu X, Tian JY (2018) Bexarotene attenuates early brain injury via inhibiting micoglia activation through PPARγ after experimental subarachnoid hemorrhage. Neurol Res 40:702–708. https://doi.org/10.1080/01616412.2018.1463900

    CAS  Article  PubMed  Google Scholar 

  67. Tunctan B, Kucukkavruk SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S (2018) Bexarotene, a selective RXRα agonist, reverses hypotension associated with inflammation and tissue injury in a rat model of septic shock. Inflammation. 41:337–355. https://doi.org/10.1007/s10753-017-0691-5

    CAS  Article  PubMed  Google Scholar 

  68. Vazquez-DeRose J, Schwartz MD, Nguyen AT, Warrier DR, Gulati S, Mathew TK, Neylan TC, Kilduff TS (2016) Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Struct Funct 221:923–940. https://doi.org/10.1007/s00429-014-0946-y

    CAS  Article  PubMed  Google Scholar 

  69. Watanabe M, Kakuta H (2018) Retinoid X receptor antagonists. Int J Mol Sci 19:2354. https://doi.org/10.3390/ijms19082354

    CAS  Article  PubMed Central  Google Scholar 

  70. Wnuk A, Rzemieniec J, Lasoń W, Krzeptowski W, Kajta M (2018) Benzophenone-3 impairs autophagy, alters epigenetic status, and disrupts retinoid X receptor signaling in apoptotic neuronal cells. Mol Neurobiol 55:5059–5074. https://doi.org/10.1007/s12035-017-0704-2

    CAS  Article  PubMed  Google Scholar 

  71. Yamashita S, Masuda D, Matsuzawa Y (2019) Clinical applications of a novel selective PPARα modulator, pemafibrate, in dyslipidemia and metabolic diseases. J Atheroscler Thromb 26:389–402. https://doi.org/10.5551/jat.48918

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yang H, Shan W, Zhu F, Yu T, Fan J, Guo A, Li F, Yang X, Wang Q (2019) C-Fos mapping and EEG characteristics of multiple mice brain regions in pentylenetetrazol-induced seizure mice model. Neurol Res 41:749–761. https://doi.org/10.1080/01616412.2019.1610839

    CAS  Article  PubMed  Google Scholar 

  73. Yu XH, Zheng XL, Tang CK (2015) Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis. Adv Clin Chem 71:171–203. https://doi.org/10.1016/bs.acc.2015.06.005

    CAS  Article  PubMed  Google Scholar 

  74. Zhang Z, Zhao G, Liu L, He J, Darwazeh R, Liu H, Chen H, Zhou C, Guo Z, Sun X (2019) Bexarotene exerts protective effects through modulation of the cerebral vascular smooth muscle cell phenotypic transformation by regulating PPARγ/FLAP/LTB4 after subarachnoid hemorrhage in rats. Cell Transplant 963689719842161. https://doi.org/10.1177/0963689719842161

Download references

Funding

This work was supported by the Escuela de Medicina, Universidad Anáhuac Mayab (PresInvEMR2018), given to E. MR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric Murillo-Rodríguez.

Ethics declarations

The experimental protocols were approved by the Research and Ethics Committee of Universidad Anáhuac Mayab (Mérida, Yucatán, México), and the protocols met the requirements of Animal Welfare including the Mexican Standards Related to Use and Management of Laboratory Animals (DOF. NOM-062-Z00-1999), the National Institutes of Health (NIH Publication No. 80-23, revised 1996), and the ARRIVE (Animal Research: Reporting of in vivo Experiments) guidelines, the commonly accepted “3Rs” Guidelines.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murillo-Rodríguez, E., Millán-Aldaco, D., Arankowsky-Sandoval, G. et al. The retinoid X receptor: a nuclear receptor that modulates the sleep-wake cycle in rats. Psychopharmacology 237, 2055–2073 (2020). https://doi.org/10.1007/s00213-020-05518-8

Download citation

Keywords

  • Adenosine
  • Dopamine
  • Retinoid X receptor
  • Serotonin
  • Sleep