Skip to main content
Log in

Modulation by chronic antipsychotic administration of PKA- and GSK3β-mediated pathways and the NMDA receptor in rat ventral midbrain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Antipsychotics exert therapeutic effects by modulating various cellular signalling pathways and several types of receptors, including PKA- and GSK3β-mediated signalling pathways, and NMDA receptors. The ventral midbrain, mainly containing the ventral tegmental area (VTA) and substantia nigra (SN), are the nuclei with dopamine origins in the brain, which are also involved in the actions of antipsychotics. Whether antipsychotics can modulate these cellular pathways in the ventral midbrain is unknown.

Objective

This study aims to investigate the effects of antipsychotics, including aripiprazole (a dopamine D2 receptor (D2R) partial agonist), bifeprunox (a D2R partial agonist), and haloperidol (a D2R antagonist) on the PKA- and GSK3β-mediated pathways and NMDA receptors in the ventral midbrain.

Methods

Male rats were orally administered aripiprazole (0.75 mg/kg, t.i.d. (ter in die)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for either 1 week or 10 weeks. The levels of PKA, p-PKA, Akt, p-Akt, GSK3β, p-GSK3β, Dvl-3, β-catenin, and NMDA receptor subunits in the ventral midbrain were assessed by Western Blots.

Results

The results showed that chronic antipsychotic treatment with aripiprazole selectively increased PKA activity in the VTA. Additionally, all three drugs elevated the activity of the Akt–GSK3β signalling pathway in a time-dependent manner, while only aripiprazole stimulated the Dvl-3–GSK3β–β-catenin signalling pathway in the SN. Furthermore, chronic administration with both aripiprazole and haloperidol decreased the expression of NMDA receptors.

Conclusion

This study suggests that activating PKA- and GSK3β-mediated pathways and downregulating NMDA receptor expression in the ventral midbrain might contribute to the clinical effects of antipsychotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • (Administration) FUSFaD (2005) Guidance for industry on estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. In: Services USDoHaH, Administration FaD, (CDER) CfDEaR (eds) Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers, Rockville, Maryland, USA

  • Alimohamad H, Rajakumar N, Seah YH, Rushlow W (2005a) Antipsychotics alter the protein expression levels of beta-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol Psychiatry 57:533–542

    Article  CAS  PubMed  Google Scholar 

  • Alimohamad H, Sutton L, Mouyal J, Rajakumar N, Rushlow WJ (2005b) The effects of antipsychotics on beta-catenin, glycogen synthase kinase-3 and dishevelled in the ventral midbrain of rats. J Neurochem 95:513–525

    Article  CAS  PubMed  Google Scholar 

  • Allen JA, Yost JM, Setola V, Chen X, Sassano MF, Chen M, Peterson S, Yadav PN, Huang XP, Feng B, Jensen NH, Che X, Bai X, Frye SV, Wetsel WC, Caron MG, Javitch JA, Roth BL, Jin J (2011) Discovery of beta-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci U S A 108:18488–18493

    Article  PubMed  PubMed Central  Google Scholar 

  • Assie MB, Dominguez H, Consul-Denjean N, Newman-Tancredi A (2006) In vivo occupancy of dopamine D2 receptors by antipsychotic drugs and novel compounds in the mouse striatum and olfactory tubercles. Naunyn Schmiedeberg’s Arch Pharmacol 373:441–450

    Article  CAS  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347

    Article  CAS  PubMed  Google Scholar 

  • Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, Gao XJ, Kremer EJ, Malenka RC, Luo L (2015) Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162:622–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd PJ, Cunliffe VT, Roy S, Wood JD (2015) Sonic hedgehog functions upstream of disrupted-in-schizophrenia 1 (disc1): implications for mental illness. Biol Open 4:1336–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh) 20:140–144

    Article  CAS  Google Scholar 

  • Casey DE, Sands EE, Heisterberg J, Yang HM (2008) Efficacy and safety of bifeprunox in patients with an acute exacerbation of schizophrenia: results from a randomized, double-blind, placebo-controlled, multicenter, dose-finding study. Psychopharmacology 200:317–331

    Article  CAS  PubMed  Google Scholar 

  • Correll CU (2010) From receptor pharmacology to improved outcomes: individualising the selection, dosing, and switching of antipsychotics. Eur Psychiatry 25(Supplement 2):S12–S21

    Article  PubMed  Google Scholar 

  • Dal Toso R, Sommer B, Ewert M, Herb A, Pritchett DB, Bach A, Shivers BD, Seeburg PH (1989) The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J 8:4025–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi Y, Rizavi HS, Pandey GN (2002) Differential effects of haloperidol and clozapine on [(3)H]cAMP binding, protein kinase A (PKA) activity, and mRNA and protein expression of selective regulatory and catalytic subunit isoforms of PKA in rat brain. J Pharmacol Exp Ther 301:197–209

    Article  CAS  PubMed  Google Scholar 

  • El Hage C, Bédard A-M, Samaha A-N (2015) Antipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function. Neuropharmacology 99:715–725

    Article  CAS  PubMed  Google Scholar 

  • el Mestikawy S, Hamon M (1986) Is dopamine-induced inhibition of adenylate cyclase involved in the autoreceptor-mediated negative control of tyrosine hydroxylase in striatal dopaminergic terminals? J Neurochem 47:1425–1433

    Article  PubMed  Google Scholar 

  • Emamian ES (2012) AKT/GSK3 signaling pathway and schizophrenia. Front Mol Neurosci 5:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford CP (2014) The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 282C:13–22

    Article  CAS  Google Scholar 

  • Gardner DM, Murphy AL, O'Donnell H, Centorrino F, Baldessarini RJ (2010) International consensus study of antipsychotic dosing. Am J Psychiatry 167:686–693

    Article  PubMed  Google Scholar 

  • Ginovart N, Kapur S (2012) Role of dopamine D(2) receptors for antipsychotic activity. Handb Exp Pharmacol:27–52

  • Han M, Huang XF, Deng C (2009) Aripiprazole differentially affects mesolimbic and nigrostriatal dopaminergic transmission: implications for long-term drug efficacy and low extrapyramidal side-effects. Int J Neuropsychopharmacol 12:941–952

    Article  CAS  PubMed  Google Scholar 

  • Harada WJ, Haycock JW, Goldstein M (1996) Regulation of L-DOPA biosynthesis by site-specific phosphorylation of tyrosine hydroxylase in AtT-20 cells expressing wild-type and serine 40-substituted enzyme. J Neurochem 67:629–635

    Article  CAS  PubMed  Google Scholar 

  • Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka RC, Luo L, Tomer R, Deisseroth K (2015) Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162:635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M (2016) Antipsychotic-induced sensitization and tolerance: behavioral characteristics, developmental impacts, and neurobiological mechanisms. J Psychopharmacol 30:749–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Rosborough KM, Friedman AB, Zhu W, Roth KA (2007) Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics. Int J Neuropsychopharmacol 10:7–19

    Article  CAS  PubMed  Google Scholar 

  • Lindgren N, Usiello A, Goiny M, Haycock J, Erbs E, Greengard P, Hokfelt T, Borrelli E, Fisone G (2003) Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc Natl Acad Sci U S A 100:4305–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Q, Luo Q, Wang K, Bates A, Shetty AK (2017) Mash1-dependent notch signaling pathway regulates GABAergic neuron-like differentiation from bone marrow-derived mesenchymal stem cells. Aging Dis 8:301–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Mace S, Taylor D (2009) Aripiprazole: dose-response relationship in schizophrenia and schizoaffective disorder. CNS Drugs 23:773–780

    Article  CAS  PubMed  Google Scholar 

  • Mailman RB, Murthy V (2010) Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des 16:488–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran-Gates T, Gan L, Park YS, Zhang K, Baldessarini RJ, Tarazi FI (2006) Repeated antipsychotic drug exposure in developing rats: dopamine receptor effects. Synapse 59:92–100

    Article  CAS  PubMed  Google Scholar 

  • Morikawa H, Paladini CA (2011) Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 198:95–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natesan S, Reckless GE, Nobrega JN, Fletcher PJ, Kapur S (2006) Dissociation between in vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology 31:1854–1863

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Chen J, Lian J, Huang XF, Deng C (2015) Unique effects of acute aripiprazole treatment on the dopamine D2 receptor downstream cAMP-PKA and Akt-GSK3beta signalling pathways in rats. PLoS One 10:e0132722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan B, Huang XF, Deng C (2016a) Aripiprazole and haloperidol activate GSK3beta-dependent signalling pathway differentially in various brain regions of rats. Int J Mol Sci 17:459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan B, Huang XF, Deng C (2016b) Chronic administration of aripiprazole activates GSK3beta-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep 6:30040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan B, Lian J, Huang XF, Deng C (2016c) Aripiprazole increases the PKA signalling and expression of the GABAA receptor and CREB1 in the nucleus accumbens of rats. J Mol Neurosci 59:36–47

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Seo MK, Cho HY, Lee JG, Lee BJ, Seol W, Kim YH (2011) Differential effects of amisulpride and haloperidol on dopamine D2 receptor-mediated signaling in SH-SY5Y cells. Neuropharmacology 61:761–769

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press, San Diego

    Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr, Roskoski LM (1987) Activation of tyrosine hydroxylase in PC12 cells by the cyclic GMP and cyclic AMP second messenger systems. J Neurochem 48:236–242

    Article  CAS  PubMed  Google Scholar 

  • Roth BL, Driscol J (2018) PDSP Ki database Psychoactive Drug Screening Program (PDSP). University of North Carolina at Chapel Hill and the United States National Institute of Mental Health

  • Seo MK, Lee CH, Cho HY, You YS, Lee BJ, Lee JG, Park SW, Kim YH (2015) Effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats subjected to immobilization stress. Psychiatry Res 229:968–974

    Article  CAS  PubMed  Google Scholar 

  • Sibley DR (1999) New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 39:313–341

    Article  CAS  PubMed  Google Scholar 

  • Singh KK (2013) An emerging role for Wnt and GSK3 signaling pathways in schizophrenia. Clin Genet 83:511–517

    Article  CAS  PubMed  Google Scholar 

  • Strait KA, Kuczenski R (1986) Dopamine autoreceptor regulation of the kinetic state of striatal tyrosine hydroxylase. Mol Pharmacol 29:561–569

    CAS  PubMed  Google Scholar 

  • Sutton LP, Rushlow WJ (2011) The effects of neuropsychiatric drugs on glycogen synthase kinase-3 signaling. Neuroscience 199:116–124

    Article  CAS  PubMed  Google Scholar 

  • Tadori Y, Miwa T, Tottori K, Burris KD, Stark A, Mori T, Kikuchi T (2005) Aripiprazole's low intrinsic activities at human dopamine D2L and D2S receptors render it a unique antipsychotic. Eur J Pharmacol 515:10–19

    Article  CAS  PubMed  Google Scholar 

  • Tadori Y, Kitagawa H, Forbes RA, McQuade RD, Stark A, Kikuchi T (2007) Differences in agonist/antagonist properties at human dopamine D(2) receptors between aripiprazole, bifeprunox and SDZ 208-912. Eur J Pharmacol 574:103–111

    Article  CAS  PubMed  Google Scholar 

  • Turalba AV, Leite-Morris KA, Kaplan GB (2004) Antipsychotics regulate cyclic AMP-dependent protein kinase and phosphorylated cyclic AMP response element-binding protein in striatal and cortical brain regions in mice. Neurosci Lett 357:53–57

    Article  CAS  PubMed  Google Scholar 

  • Wadenberg M-LG (2007) Bifeprunox: a novel antipsychotic agent with partial agonist properties at dopamine D2 and serotonin 5-HT1A receptors. Future Neurol 2:153–165

    Article  CAS  Google Scholar 

  • Wang B, Zhang Y, Dong H, Gong S, Wei B, Luo M, Wang H, Wu X, Liu W, Xu X, Zheng Y, Sun M (2018) Loss of Tctn3 causes neuronal apoptosis and neural tube defects in mice. Cell Death Dis 9:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf ME, Roth RH (1990) Autoreceptor regulation of dopamine synthesis. Ann N Y Acad Sci 604:323–343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jiamei Lian and Dr. Michael De-Santis for their technical assistance.

Funding

This study was supported by the Australian National Health and Medical Research Council project grant (APP1008473) to Chao Deng. Bo Pan was supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (17KJB310018), the China Postdoctoral Science Foundation (2018 M632401), and the Natural Science Foundation of Jiangsu Province of China (BK20171290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Deng.

Ethics declarations

All experimental procedures were approved by the Animal Ethics Committee (AE11/02) of the University of Wollongong and complied with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (2004).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, B., Deng, C. Modulation by chronic antipsychotic administration of PKA- and GSK3β-mediated pathways and the NMDA receptor in rat ventral midbrain. Psychopharmacology 236, 2687–2697 (2019). https://doi.org/10.1007/s00213-019-05243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05243-x

Keywords

Navigation