Skip to main content

Advertisement

Log in

Neuroepigenetic mechanisms underlying fear extinction: emerging concepts

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

An understanding of how memory is acquired and how it can be modified in fear-related anxiety disorders, with the enhancement of failing memories on one side and a reduction or elimination of traumatic memories on the other, is a key unmet challenge in the fields of neuroscience and neuropsychiatry. The latter process depends on an important form of learning called fear extinction, where a previously acquired fear-related memory is decoupled from its ability to control behaviour through repeated non-reinforced exposure to the original fear-inducing cue. Although simple in description, fear extinction relies on a complex pattern of brain region and cell-type specific processes, some of which are unique to this form of learning and, for better or worse, contribute to the inherent instability of fear extinction memory. Here, we explore an emerging layer of biology that may compliment and enrich the synapse-centric perspective of fear extinction. As opposed to the more classically defined role of protein synthesis in the formation of fear extinction memory, a neuroepigenetic view of the experience-dependent gene expression involves an appreciation of dynamic changes in the state of the entire cell: from a transient change in plasticity at the level of the synapse, to potentially more persistent long-term effects within the nucleus. A deeper understanding of neuroepigenetic mechanisms and how they influence the formation and maintenance of fear extinction memory has the potential to enable the development of more effective treatment approaches for fear-related neuropsychiatric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdou K, Shehata M, Choko K, Nishizono H, Matsuo M, Muramatsu S, Inokuchi K (2018) Synapse-specific representation of the identity of overlapping memory engrams. Science (80) 360:1227–1231

    Article  CAS  Google Scholar 

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An B, Kim J, Park K, Lee S, Song S, Choi S (2017) Amount of fear extinction changes its underlying mechanisms. elife 6

  • Anuar ND (2018) Using TALENs to knockout H2A.Lap1 function in mice. Aust Natl Univ. PhD thesis:1–274

  • Ashapkin VV, Romanov GA, Tushmalova NA, Vanyushin BF (1982) Selective DNA synthesis in the rate brain induced by. Learning 48:355–362

    Google Scholar 

  • Attardo A, Fitzgerald JE, Schnitzer MJ (2015) Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 523:592–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auber A, Tedesco V, Jones CE, Monfils MH, Chiamulera C (2013) Post-retrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology 226:631–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahari-Javan S, Maddalena A, Kerimoglu C, Wittnam J, Held T, Bahr M, Burkhardt S, Delalle I, Kugler S, Fischer A, Sananbenesi F (2012) HDAC1 regulates fear extinction in mice. J Neurosci 32:5062–5073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Andresen D, Ratnu VS, Bredy TW (2013) Dynamic DNA methylation: a prime candidate for genomic metaplasticity and behavioral adaptation. Trends Neurosci 36:3–13

    Article  CAS  PubMed  Google Scholar 

  • Baum M (1988) Spontaneous recovery from the effects of flooding (exposure) in animals. Behav Res Ther 26:185–186

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouton ME, Bolles RC (1979a) Contextual control of the extinction of conditioned fear. Learn Motiv 10:445–466

    Article  Google Scholar 

  • Bouton ME, Bolles RC (1979b) Role of conditioned contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim Behav Process 5:368–378

    Article  CAS  PubMed  Google Scholar 

  • Bredy TW, Barad M (2008) The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn Mem 15:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M (2007) Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 14:268–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cain CK, Blouin AM, Barad M (2003) Temporally massed CS presentations generate more fear extinction than spaced presentations. J Exp Psychol Anim Behav Process. 29:323–333

    Article  PubMed  Google Scholar 

  • Chen S, Cai D, Pearce K, Sun PY, Roberts AC, Glanzman DL. 2014. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. :1–21

  • Clem RL, Huganir RL (2010) Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science (80). 330:1108–1112

    Article  CAS  PubMed Central  Google Scholar 

  • Clem RL, Schiller D (2016) New learning and unlearning: strangers or accomplices in threat memory attenuation? Trends Neurosci 39:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damez-Werno DM, Sun H, Scobie KN, Shao N, Rabkin J, Dias C, Calipari ES, Maze I, Pena CJ, Walker DM, Cahill ME, Chandra R, Gancarz A, Mouzon E, Landry JA, Cates H, Lobo MK, Dietz D, Allis CD, Guccione E, Turecki G, Defilippi P, Neve RL, Hurd YL, Shen L, Nestler EJ (2016) Histone arginine methylation in cocaine action in the nucleus accumbens. Proc Natl Acad Sci 113:9623–9628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day JJ, Sweatt JD (2010) DNA methylation and memory formation. Nat Neurosci 13:1319–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day JJ, Sweatt JD (2011) Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory. Neurobiol Learn Mem 96:2–12

    Article  CAS  PubMed  Google Scholar 

  • Dietz DM, LaPlant Q, Watts EL, Hodes GE, Russo SJ, Feng J, Oosting RS, Vialou V, Nestler EJ (2011) Paternal transmission of stressed-induced pathologies. Biol Psychiatry 70:408–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Draizen EJ, Shaytan AK, Mariño-Ramírez L, Talbert PB, Landsman D, Panchenko AR (2016) HistoneDB 2.0: a histone database with variants—an integrated resource to explore histones and their variants. Database:2016

  • Dudai Y, Eisenberg M (2004) Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44:93–100

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg M, Kobilo T, Berman DE, Dudai Y (2003) Stability of retrieved memory: inverse correlation with trace dominance. Science (80). 301:1102–1104

    Article  CAS  Google Scholar 

  • Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024

    Article  CAS  Google Scholar 

  • Fischer A (2014) Epigenetic memory: the Lamarckian brain. EMBO J 33:945–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavell CR, Lambert EA, Winters BD, Bredy TW (2013) Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction. Front Behav Neurosci 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin TB, Russig H, Weiss IC, Grff J, Linder N, Michalon A, Vizi S, Mansuy IM (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68:408–415

    Article  PubMed  Google Scholar 

  • Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6:268–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Gräff J, Tsai LH (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97–111

    Article  PubMed  CAS  Google Scholar 

  • Gräff J, Joseph NF, Horn ME, Samiei A, Meng J, Seo J, Rei D, Bero AW, Phan TX, Wagner F, Holson E, Xu J, Sun J, Neve RL, Mach RH, Haggarty SJ, Tsai LH (2014) Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 156:261–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta-Agarwal S, Franklin AV, DeRamus T, Wheelock M, Davis RL, McMahon LL, Lubin FD (2012) G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci 32:5440–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta-Agarwal S, Jarome TJ, Fernandez J, Lubin FD (2014) NMDA receptor- and ERK-dependent histone methylation changes in the lateral amygdala bidirectionally regulate fear memory formation. Learn Mem 21:351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci 103:6428–6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman B, Hahn KM, Kasai H (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemstedt TJ, Lattal KM, Wood MA (2017) Reconsolidation and extinction: using epigenetic signatures to challenge conventional wisdom. Neurobiol Learn Mem 142:55–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454:600–606

    Article  CAS  PubMed  Google Scholar 

  • Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Lüthi A (2010) Neuronal circuits of fear extinction. Eur J Neurosci 31:599–612

    Article  PubMed  Google Scholar 

  • Hong J, Kim D (2017) Freezing response-independent facilitation of fear extinction memory in the prefrontal cortex. Sci Rep 7

  • Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102

    Article  CAS  PubMed  Google Scholar 

  • Itzhak Y, Anderson KL, Kelley JB, Petkov M (2012) Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice. Neurobiol Learn Mem 97:409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarome TJ, Perez GA, Hauser RM, Hatch KM, Lubin FD (2018) EZH2 methyltransferase activity controls Pten expression and mTOR signaling during fear memory reconsolidation. J Neurosci:0538–0518

  • Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK, Wright MA, Zweifel L, Paninski L, Hen R, Kheirbek MA (2018) Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 97:670–683.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kida S, Josselyn SA, De Ortiz SP, Kogan JH, Chevere I, Masushige S, Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kwon J-T, Kim H-S, Han J-H (2013) CREB and neuronal selection for memory trace. Front Neural Circuits 7

  • Lai CSW, Adler A, Gan W-B (2018) Fear extinction reverses dendritic spine formation induced by fear conditioning in the mouse auditory cortex. Proc Natl Acad Sci:201801504

  • Lashley K (1950) In search of the engram. Exp Biol Symp No 4 Physiol Mech Anim Behav:454–482

  • Lechner HA, Squire LR (1999) 100 years of consolidation—remembering Müller and Pilzecker. Learn Mem (Cold Spring Harb NY)

  • Lee JLC, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science (80- ) 304:839–843

    Article  CAS  Google Scholar 

  • Li X, Wei W, Ratnu VS, Bredy TW (2013) On the potential role of active DNA demethylation in establishing epigenetic states associated with neural plasticity and memory. Neurobiol Learn Mem 105:125–132

    Article  PubMed  Google Scholar 

  • Li X, Wei W, Zhao Q-Y, Widagdo J, Baker-Andresen D, Flavell CR, D’Alessio A, Zhang Y, Bredy TW (2014) Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc Natl Acad Sci 111:7120–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wei W, Lin Q, Magnan C, Emami M, Wearick-Silva LE, Viola T, Marshall P, Grassi-Oliveira R, Nainar S et al (2016) The formation of extinction memory requires the accumulation of N6-methyl-2-deoxyadenosine in DNA. BioRxiv

  • Li X, Marshall PR, Leighton LJ, Zajaczkowski EL (2018) The DNA repair associated protein Gadd45g regulates the temporal coding of immediate early gene expression and is required for the consolidation of associative fear memory. BioRxiv

  • Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, Ratnu VS, Boskovic Z, Kobor MS, Sun YE, Bredy TW (2011) The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 14:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Sun X, Wang Z, Le Q, Liu P, Jiang C, Wang F, Ma L (2017) Retrieval-induced upregulation of Tet3 in pyramidal neurons of the dorsal Hippocampus mediates cocaine-associated memory reconsolidation. Int J Neuropsychopharmacol

  • Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 41:D262–D267

    Article  CAS  PubMed  Google Scholar 

  • Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S, Seo J, Rueda R, Phan TX, Yamakawa H, Pao P-C, Stott RT, Gjoneska E, Nott A, Cho S, Kellis M, Tsai LH (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161:1592–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malvaez M, McQuown SC, Rogge GA, Astarabadi M, Jacques V, Carreiro S, Rusche JR, Wood MA (2013) HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci 110:2647–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marek R, Jin J, Goode TD, Giustino TF, Wang Q, Acca GM, Holehonnur R, Ploski JE, Fitzgerald PJ, Lynagh T, Lynch JW, Maren S, Sah P (2018) Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci 21:384–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall P, Bredy TW (2016) Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory? NPJ Sci Learn 1:16014

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattick JS, Mehler MF (2008) RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 31:227–233

    Article  CAS  PubMed  Google Scholar 

  • Maze I, Wenderski W, Noh KM, Bagot RC, Tzavaras N, Purushothaman I, Elsässer SJ, Guo Y, Ionete C, Hurd YL, Tamminga CA, Halene T, Farrelly L, Soshnev AA, Wen D, Rafii S, Birtwistle MR, Akbarian S, Buchholz BA, Blitzer RD, Nestler EJ, Yuan ZF, Garcia BA, Shen L, Molina H, Allis CD (2015) Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87:77–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251

    Article  CAS  PubMed  Google Scholar 

  • Milad MRR, Quirk GJJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74

    Article  CAS  PubMed  Google Scholar 

  • Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    Article  CAS  PubMed  Google Scholar 

  • Misanin JR, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science (80- ) 160:554–555

    Article  CAS  Google Scholar 

  • Mladenova D, Barry G, Konen LM, Pineda SS, Guennewig B, Avesson L, Zinn R, Schonrock N, Bitar M, Jonkhout N, Crumlish L, Kaczorowski DC, Gong A, Pinese M, Franco GR, Walkley CR, Vissel B, Mattick JS (2018) Adar3 is involved in learning and memory in mice. Front Neurosci 12

  • Morris MJ, Mahgoub M, Na ES, Pranav H, Monteggia LM (2013) Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 33:6401–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller GE, Pilzecker A (1900) Experimentelle Beiträge zur Lehre vom Gedächtnis. Z Psychol Ergänzungsband 1:1–300

    Google Scholar 

  • Murphy CP, Li X, Maurer V, Oberhauser M, Gstir R, Wearick-Silva LE, Viola TW, Schafferer S, Grassi-Oliveira R, Whittle N, Hüttenhofer A, Bredy TW, Singewald N (2017) MicroRNA-mediated rescue of fear extinction memory by miR-144-3p in extinction-impaired mice. Biol Psychiatry 81:979–989

    Article  CAS  PubMed  Google Scholar 

  • Myers KM (2006) Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learn Mem 13:216–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511:348–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    Article  CAS  PubMed  Google Scholar 

  • Nainar S, Marshall PR, Tyler CR, Spitale RC, Bredy TW (2016) Evolving insights into RNA modifications and their functional diversity in the brain. Nat Neurosci 19:1292–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naylor LH, Clark EM (1990) D(TG)n·d(CA)nsequences upstream of the rat prolactin gene form z-DNA and inhibit gene transcription. Nucleic Acids Res 18:1595–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford Univ Press, p xv-430

  • Pohl FM (1987) Hysteretic behaviour of a Z-DNA-antibody complex. Biophys Chem 26:385–390

    Article  CAS  PubMed  Google Scholar 

  • Poo M m, Pignatelli M, Ryan TJ, Tonegawa S, Bonhoeffer T, Martin KC, Rudenko A, Tsai LH, Tsien RW, Fishell G et al (2016) What is memory? The present state of the engram. BMC Biol 14:1–18

    Article  CAS  Google Scholar 

  • Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72

    Article  PubMed  Google Scholar 

  • Ratnu VS, Wei W, Bredy TW (2014) Activation-induced cytidine deaminase regulates activity-dependent BDNF expression in post-mitotic cortical neurons. Eur J Neurosci 40(7):3032–3039

    Article  PubMed  Google Scholar 

  • Rescorla RA, Heth CD (1975) Reinstatement of fear to an extinguished conditioned stimulus. J Exp Psychol Anim Behav Process 104:88–96

    Article  Google Scholar 

  • Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13:263–273

    Article  CAS  PubMed  Google Scholar 

  • Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci 112:13699–13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rountree MR, Selker EU (1997) DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev 11:2383–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudenko A, Dawlaty M, Seo J, Cheng A, Meng J, Le T, Faull K, Jaenisch R, Tsai LH (2013) Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79:1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russ AP, Friedel C, Grez M, von Melchner H (1996) Self-deleting retrovirus vectors for gene therapy. J Virol 70:4927–4932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro SW, Dulac C (2012) The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. elife 2012

  • Saucier D, Cain DP (1995) Spatial learning without NMDA receptor-dependent long-term potentiation. Nature 378:186–189

    Article  CAS  PubMed  Google Scholar 

  • Schmitt M, Matthies H (1979) Biochemical studies on histones of the central nervous system. III. Incorporation of [14C]-acetate into the histones of different rat brain regions during a learning experiment. Acta Biol Med Ger 38:683–689

    CAS  PubMed  Google Scholar 

  • Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci 99:11593–11598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AJ, Kogan JH, Frankland PW, Kida S (1998) Creb and memory. Annu Rev Neurosci 21:127–148

    Article  CAS  PubMed  Google Scholar 

  • Stafford JM, Lattal KM (2011) Is an epigenetic switch the key to persistent extinction? Neurobiol Learn Mem 96:35–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafford JM, Raybuck JD, Ryabinin AE, Lattal KM (2012) Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol Psychiatry 72:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanelli G, Azam AB, Walters BJ, Brimble MA, Gettens CP, Bouchard-Cannon P, Cheng HYM, Davidoff AM, Narkaj K, Day JJ, Kennedy AJ, Zovkic IB (2018) Learning and age-related changes in genome-wide H2A.Z binding in the mouse Hippocampus. Cell Rep 22:1124–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian V, Fields PA, Boyer LA (2015) H2A.Z: a molecular rheostat for transcriptional control. F1000Prime Rep 7

  • Swank MW, Sweatt JD (2001) Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J Neurosci 21:3383–3391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16:317–331

    Article  CAS  PubMed  Google Scholar 

  • Vanyushin BF, Ashapkin V V (2017) History and Modern View on DNA Modifications in the Brain. In: DNA Modif Brain. [place unknown]; p. 1–25

  • Walters BJ, Mercaldo V, Gillon CJ, Yip M, Neve RL, Boyce FM, Frankland PW, Josselyn SA (2017) The role of the RNA demethylase FTO (fat mass and obesity-associated) and mRNA methylation in hippocampal memory formation. Neuropsychopharmacology 42:1502–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Webb WM, Sanchez RG, Perez G, Butler AA, Hauser RM, Rich MC, O’Bierne AL, Jarome TJ, Lubin FD (2017) Dynamic association of epigenetic H3K4me3 and DNA 5hmC marks in the dorsal hippocampus and anterior cingulate cortex following reactivation of a fear memory. Neurobiol Learn Mem 142:66–78

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Coelho CM, Li X, Marek R, Yan S, Anderson S, Meyers D, Mukherjee C, Sbardella G, Castellano S, Milite C, Rotili D, Mai A, Cole PA, Sah P, Kobor MS, Bredy TW (2012) p300/CBP-associated factor selectively regulates the extinction of conditioned fear. J Neurosci 32:11930–11941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittle N, Singewald N (2014) HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem Soc Trans 42:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widagdo XJ, Zhao XQ, Kempen XM, Tan XMC, Ratnu VS, Wei W, Leighton L, Spadaro PA, Edson J, Anggono XV, Bredy XTW (2016) Experience-dependent accumulation of N 6-methyladenosine in the prefrontal cortex is associated with memory processes in mice. J Neurosci 36:6771–6777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright A, Vissel B (2012) The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front Mol Neurosci 5

  • Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, Park J, Ji SJ (2018) Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res 46:1412–1423

    Article  CAS  PubMed  Google Scholar 

  • Zhao W-N, Malinin N, Yang F-C, Staknis D, Gekakis N, Maier B, Reischl S, Kramer A, Weitz CJ, Sun M et al (2014) Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation. PLoS One 9:690–699

    Google Scholar 

  • Zovkic IB, Paulukaitis BS, Day JJ, Etikala DM, Sweatt JD (2014) Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature 515:582–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would also like to thank Ms. Rowan Tweedale for helpful editing of the manuscript.

Funding

The authors gratefully acknowledge grant support from the NIH (5R01MH105398-TWB) and the Australian Research Council (SR120300015-TWB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Marshall.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Special Issue on Psychopharmacology of Extinction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marshall, P.R., Bredy, T.W. Neuroepigenetic mechanisms underlying fear extinction: emerging concepts. Psychopharmacology 236, 133–142 (2019). https://doi.org/10.1007/s00213-018-5084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5084-4

Keywords

Navigation