Amphetamine primes enhanced motivation toward uncertain choices in rats with genetic alcohol preference

  • Ville Oinio
  • Mikko Sundström
  • Pia Bäckström
  • Johanna Uhari-Väänänen
  • Kalervo Kiianmaa
  • Atso Raasmaja
  • Petteri Piepponen
Original Investigation
  • 42 Downloads

Abstract

Rationale

Comorbidity with gambling disorder (GD) and alcohol use disorder (AUD) is well documented.

Objective

The purpose of our study was to examine the influence of genetic alcohol drinking tendency on reward-guided decision making behavior of rats and the impact of dopamine releaser D-amphetamine on this behavior.

Methods

In this study, Alko alcohol (AA) and Wistar rats went through long periods of operant lever pressing training where the task was to choose the profitable of two options. The lever choices were guided by different-sized sucrose rewards (one or three pellets), and the probability of gaining the larger reward was slowly changed to a level where choosing the smaller reward would be the most profitable in the long run. After training, rats were injected (s.c.) with dopamine releaser D-amphetamine (0.3, 1.0 mg/kg) to study the impact of rapid dopamine release on this learned decision making behavior.

Results

Administration of D-amphetamine promoted unprofitable decision making of AA rats more robustly when compared to Wistar rats. At the same time, D-amphetamine reduced lever pressing responses. Interestingly, we found that this reduction in lever pressing was significantly greater in Wistar rats than in AA rats and it was not linked to motivation to consume sucrose.

Conclusions

Our results indicate that conditioning to the lever pressing in uncertain environments is more pronounced in AA than in Wistar rats and indicate that the reinforcing effects of a gambling-like environment act as a stronger conditioning factor for rats that exhibit a genetic tendency for high alcohol drinking.

Keywords

Gambling Alcohol use disorder Decision making D-Amphetamine Rats 

Notes

Acknowledgements

This study was supported by the Finnish Foundation for Alcohol Studies and Orion Research Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

213_2018_4847_MOESM1_ESM.jpg (107 kb)
ESM 1 (JPEG 106 kb)
213_2018_4847_MOESM2_ESM.jpg (104 kb)
ESM 2 (JPEG 104 kb)
213_2018_4847_MOESM3_ESM.jpg (662 kb)
ESM 3 (JPEG 661 kb)
213_2018_4847_MOESM4_ESM.jpg (653 kb)
ESM 4 (JPEG 653 kb)

References

  1. Adriani W, Laviola G (2006) Delay aversion but preference for large and rare rewards in two choice tasks: implications for the measurement of self-control parameters. BMC Neurosci 7(1):52.  https://doi.org/10.1186/1471-2202-7-52 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berridge KC, Kringelbach ML (2015) Pleasure systems in the brain. Neuron 86(3):646–664.  https://doi.org/10.1016/j.neuron.2015.02.018 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bischof A, Meyer C, Bischof G, Kastirke N, John U, Rumpf HJ (2013) Comorbid Axis I-disorders among subjects with pathological, problem, or at-risk gambling recruited from the general population in Germany: results of the PAGE study. Psychiatry Res 210(3):1065–1070.  https://doi.org/10.1016/j.psychres.2013.07.026 CrossRefPubMedGoogle Scholar
  4. Blanco C, Hanania J, Petry NM, Wall MM, Wang S, Jin CJ, Kendler KS (2015) Towards a comprehensive developmental model of pathological gambling. Addiction 110(8):1340–1351.  https://doi.org/10.1111/add.12946 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boekhoudt L, Roelofs TJM, de Jong JW, de Leeuw AE, Luijendijk MCM, Wolterink-Donselaar IG, van der Plasse G, Adan RAH (2017) Does activation of midbrain dopamine neurons promote or reduce feeding? Int J Obes 41(7):1131–1140.  https://doi.org/10.1038/ijo.2017.74 CrossRefGoogle Scholar
  6. Brevers D, Bechara A, Cleeremans A, Kornreich C, Verbanck P, Noël X (2014) Impaired decision-making under risk in individuals with alcohol dependence. Alcohol Clin Exp Res 38(7):1924–1931.  https://doi.org/10.1111/acer.12447 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cardinal RN, Howes NJ (2005) Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neurosci 6(1):37.  https://doi.org/10.1186/1471-2202-6-37 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cocker PJ, Dinelle K, Kornelson R, Sossi V, Winstanley CA (2012) Irrational choice under uncertainty correlates with lower striatal D2/3receptor binding in rats. J Neurosci 32(44):15450–15457.  https://doi.org/10.1523/JNEUROSCI.0626-12.2012 CrossRefPubMedGoogle Scholar
  9. Cowlishaw S, Merkouris S, Chapman A, Radermacher H (2014) Pathological and problem gambling in substance use treatment: a systematic review and meta-analysis. J Subst Abus Treat 46(2):98–105.  https://doi.org/10.1016/j.jsat.2013.08.019 CrossRefGoogle Scholar
  10. de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology 75(2):134–143.  https://doi.org/10.1007/BF00432175 CrossRefPubMedGoogle Scholar
  11. Dudek M, Abo-Ramadan U, Hermann D, Brown M, Canals S, Sommer WH, Hyytiä P (2015) Brain activation induced by voluntary alcohol and saccharin drinking in rats assessed with manganese-enhanced magnetic resonance imaging. Addict Biol 20(6):1012–1021.  https://doi.org/10.1111/adb.12179 CrossRefPubMedGoogle Scholar
  12. Eriksson K (1968) Genetic selection for voluntary alcohol consumption in the albino rat. Science 159(3816):739–741.  https://doi.org/10.1126/science.159.3816.739 CrossRefPubMedGoogle Scholar
  13. Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614):1898–1902.  https://doi.org/10.1126/science.1077349 CrossRefPubMedGoogle Scholar
  14. Floresco SB (2016) Dopamine neurons, input integration, and reward prediction errors: E pluribus Unum. Neuron 91(6):1192–1194.  https://doi.org/10.1016/j.neuron.2016.09.012 CrossRefPubMedGoogle Scholar
  15. Floresco SB, Block AE, Tse MTL (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190(1):85–96.  https://doi.org/10.1016/j.bbr.2008.02.008 CrossRefPubMedGoogle Scholar
  16. Flórez G, Saiz PA, Santamaría EM, Álvarez S, Nogueiras L, Arrojo M (2016) Impulsivity, implicit attitudes and explicit cognitions, and alcohol dependence as predictors of pathological gambling. Psychiatry Res 245:392–397.  https://doi.org/10.1016/j.psychres.2016.08.039 CrossRefPubMedGoogle Scholar
  17. French MT, Maclean JC, Ettner SL (2008) Drinkers and bettors: investigating the complementarity of alcohol consumption and problem gambling. Drug Alcohol Depend 96(1-2):155–164.  https://doi.org/10.1016/j.drugalcdep.2008.02.011 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Haluk DM, Floresco SB (2009) Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacology 34(8):2041–2052.  https://doi.org/10.1038/npp.2009.21 CrossRefPubMedGoogle Scholar
  19. Honkanen A, Mikkola J, Korpi ER, Hyytiä P, Seppälä T, Ahtee L (1999) Enhanced morphine and cocaine-induced behavioral sensitization in alcohol-preferring AA rats. Psychopharmacology 142(3):244–252.  https://doi.org/10.1007/s002130050886 CrossRefPubMedGoogle Scholar
  20. Hyytiä P, Sinclair JD (1989) Demonstration of lever pressing for oral ethanol by rats with no prior training or ethanol experience. Alcohol 6(2):161–164.  https://doi.org/10.1016/0741-8329(89)90041-4 CrossRefPubMedGoogle Scholar
  21. Joutsa J, Johansson J, Niemelä S, Ollikainen A, Hirvonen MM, Piepponen P, Arponen E, Alho H, Voon V, Rinne JO, Hietala J, Kaasinen V (2012) Mesolimbic dopamine release is linked to symptom severity in pathological gambling. NeuroImage 60(4):1992–1999.  https://doi.org/10.1016/j.neuroimage.2012.02.006 CrossRefPubMedGoogle Scholar
  22. Joutsa J, Voon V, Johansson J, Niemelä S, Bergman J, Kaasinen V (2015) Dopaminergic function and intertemporal choice. Transl Psychiatry 5(1):e491.  https://doi.org/10.1038/tp.2014.133 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kampov-Polevoy AB, Garbutt JC, Janowsky DS (1999) Association between preference for sweets and excessive alcohol intake: a review of animal and human studies. Alcohol Alcohol 34(3):386–395.  https://doi.org/10.1093/alcalc/34.3.386 CrossRefPubMedGoogle Scholar
  24. Kampov-Polevoy AB, Garbutt JC, Khalitov E (2003) Family history of alcoholism and response to sweets. Alcohol Clin Exp Res 27(11):1743–1749.  https://doi.org/10.1097/01.ALC.0000093739.05809.DD CrossRefPubMedGoogle Scholar
  25. Koistinen M, Tuomainen P, Hyytiä P, Kiianmaa K (2001) Naltrexone suppresses ethanol intake in 6 hydroxydopamine-treated rats. Alcohol Clin Exp Res 25(11):1605–1612PubMedGoogle Scholar
  26. Koob G, Bloom F (1988) Cellular and molecular mechanisms of drug dependence. Science 242(4879):715–723.  https://doi.org/10.1126/science.2903550 CrossRefPubMedGoogle Scholar
  27. Ledford CC, Fuchs RA, See RE (2003) Potentiated reinstatement of cocaine-seeking behavior following D-amphetamine infusion into the basolateral amygdala. Neuropsychopharmacology 28(10):1721–1729.  https://doi.org/10.1038/sj.npp.1300249 CrossRefPubMedGoogle Scholar
  28. Linnet J (2013) The Iowa gambling task and the three fallacies of dopamine in gambling disorder. Front Psychol 4:709CrossRefPubMedPubMedCentralGoogle Scholar
  29. Linnet J (2014) Neurobiological underpinnings of reward anticipation and outcome evaluation in gambling disorder. Front Behav Neurosci 8:100CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mai B, Sommer S, Hauber W (2015) Dopamine D1/D2 receptor activity in the nucleus accumbens core but not in the nucleus accumbens shell and orbitofrontal cortex modulates risk-based decision making. Int J Neuropsychopharmacol 18:1–9CrossRefGoogle Scholar
  31. Mann K, Lemenager T, Zois E, Hoffmann S, Nakovics H, Beutel M, Vogelgesang M, Wölfling K, Kiefer F, Fauth-Bühler M (2017) Comorbidity, family history and personality traits in pathological gamblers compared with healthy controls. Eur Psychiatry 42:120–128.  https://doi.org/10.1016/j.eurpsy.2016.12.002 CrossRefPubMedGoogle Scholar
  32. Melrose AJ, Bailer U, Wierenga CE, Bischoff-Grethe A, Paulus MP, Kaye WH (2016) Psychiatry research : neuroimaging amphetamine alters neural response to sucrose in healthy women. Psychiatry Res Neuroimaging 252:19–25.  https://doi.org/10.1016/j.pscychresns.2016.04.017 CrossRefPubMedGoogle Scholar
  33. Mikkola JA, Honkanen A, Piepponen TP, Kiianmaa K, Ahtee L (2001) Effects of repeated cocaine treatment on striatal dopamine release in alcohol-preferring AA and alcohol-avoiding ANA rats. Naunyn Schmiedeberg's Arch Pharmacol 363(2):209–214.  https://doi.org/10.1007/s002100000367 CrossRefGoogle Scholar
  34. Odum AL, Shahan TA (2004) D-Amphetamine reinstates behavior previously maintained by food: importance of context. Behav Pharmacol 15(7):513–516.  https://doi.org/10.1097/00008877-200411000-00007 CrossRefPubMedGoogle Scholar
  35. Oinio V, Bäckström P, Uhari-Väänänen J, Raasmaja A, Piepponen P, Kiianmaa K (2017) Dopaminergic modulation of reward-guided decision making in alcohol-preferring AA rats. Behav Brain Res 326:87–95.  https://doi.org/10.1016/j.bbr.2017.03.007 CrossRefPubMedGoogle Scholar
  36. Peciña S, Berridge KC (2013) Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered ‘wanting’ for reward: entire core and medial shell mapped as substrates for PIT enhancement. Eur J Neurosci 37(9):1529–1540.  https://doi.org/10.1111/ejn.12174 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Prescott CA, Kendler KS (1999) Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am J Psychiatry 156(1):34–40.  https://doi.org/10.1176/ajp.156.1.34 CrossRefPubMedGoogle Scholar
  38. Prescott CA, Aggen SH, Kendler KS (1999) Sex differences in the sources of genetic liability to alcohol abuse and dependence in a population-based sample of U.S. twins. Alcohol Clin Exp Res 23(7):1136–1144.  https://doi.org/10.1111/j.1530-0277.1999.tb04270.x CrossRefPubMedGoogle Scholar
  39. Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57(1):87–115.  https://doi.org/10.1146/annurev.psych.56.091103.070229 CrossRefPubMedGoogle Scholar
  40. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599.  https://doi.org/10.1126/science.275.5306.1593 CrossRefPubMedGoogle Scholar
  41. Sinclair JD, Lê AD, Kiianmaa K (1989) The AA and ANA rat lines, selected for differences in voluntary alcohol consumption. Experientia 45(9):798–805.  https://doi.org/10.1007/BF01954055 CrossRefPubMedGoogle Scholar
  42. Sinclair JD, Kampov-Polevoy A, Stewart R, Li TK (1992) Taste preferences in rat lines selected for low and high alcohol consumption. Alcohol 9(2):155–160.  https://doi.org/10.1016/0741-8329(92)90027-8 CrossRefPubMedGoogle Scholar
  43. Singer BF, Scott-Railton J, Vezina P (2012) Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behav Brain Res 226(1):340–344.  https://doi.org/10.1016/j.bbr.2011.09.003 CrossRefPubMedGoogle Scholar
  44. Slutske WS, Eisen S, True WR, Lyons MJ, Goldberg J, Tsuang M (2000) Common genetic vulnerability for pathological gambling and alcohol dependence in men. Arch Gen Psychiatry 57(7):666–673.  https://doi.org/10.1001/archpsyc.57.7.666 CrossRefPubMedGoogle Scholar
  45. Slutske WS, Ellingson JM, Richmond-Rakerd LS, Zhu G, Martin NG (2013) Shared genetic vulnerability for disordered gambling and alcohol use disorder in men and women: evidence from a national community-based Australian twin study. Twin Res Hum Genet 16(02):525–534.  https://doi.org/10.1017/thg.2013.11 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sommer W, Hyytiä P, Kiianmaa K (2006) The alcohol-preferring AA and alcohol-avoiding ANA rats: neurobiology of the regulation of alcohol drinking. Addict Biol 11(3–4):289–309.  https://doi.org/10.1111/j.1369-1600.2006.00037.x CrossRefPubMedGoogle Scholar
  47. St Onge JR, Floresco SB (2009) Dopaminergic modulation of risk-based decision making. Neuropsychopharmacology 34(3):681–697.  https://doi.org/10.1038/npp.2008.121 CrossRefPubMedGoogle Scholar
  48. Stewart RB, Russell RN, Lumeng L, Li TK, Murphy JM (1994) Consumption of sweet, salty, sour, and bitter solutions by selectively bred alcohol-preferring and alcohol-nonpreferring lines of rats. Alcohol Clin Exp Res 18(2):375–381.  https://doi.org/10.1111/j.1530-0277.1994.tb00028.x CrossRefPubMedGoogle Scholar
  49. Stopper CM, Khayambashi S, Floresco SB (2013) Receptor-specific modulation of risk-based decision making by nucleus accumbens dopamine. Neuropsychopharmacology 38(5):715–728.  https://doi.org/10.1038/npp.2012.240 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tremblay AM, Desmond RC, Poulos CX, Zack M (2011) Haloperidol modifies instrumental aspects of slot machine gambling in pathological gamblers and healthy controls. Addict Biol 16(3):467–484.  https://doi.org/10.1111/j.1369-1600.2010.00208.x CrossRefPubMedGoogle Scholar
  51. Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162(4):712–725.  https://doi.org/10.1016/j.cell.2015.07.046 CrossRefPubMedGoogle Scholar
  52. Winstanley CA, Floresco SB (2016) Deciphering decision making: variation in animal models of effort- and uncertainty-based choice reveals distinct neural circuitries underlying core cognitive processes. J Neurosci 36(48):12069–12079.  https://doi.org/10.1523/JNEUROSCI.1713-16.2016 CrossRefPubMedGoogle Scholar
  53. Wise RA (2006) Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond Ser B Biol Sci 361(1471):1149–1158.  https://doi.org/10.1098/rstb.2006.1854 CrossRefGoogle Scholar
  54. Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94(4):469–492.  https://doi.org/10.1037/0033-295X.94.4.469 CrossRefPubMedGoogle Scholar
  55. Zack M, Poulos CX (2004) Amphetamine primes motivation to gamble and gambling-related semantic networks in problem gamblers. Neuropsychopharmacology 29(1):195–207.  https://doi.org/10.1038/sj.npp.1300333 CrossRefPubMedGoogle Scholar
  56. Zack M, Featherstone RE, Mathewson S, Fletcher PJ (2014) Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. Front Behav Neurosci 8:36CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zois E, Kortlang N, Vollstädt-Klein S, Lemenager T, Beutel M, Mann K, Fauth-Bühler M (2014) Decision-making deficits in patients diagnosed with disordered gambling using the Cambridge gambling task: the effects of substance use disorder comorbidity. Brain Behav 4:484–489CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of HealthNational Institute for Health and WelfareHelsinkiFinland

Personalised recommendations