Psychopharmacology

, Volume 235, Issue 2, pp 491–503 | Cite as

Psilocybin disrupts sensory and higher order cognitive processing but not pre-attentive cognitive processing—study on P300 and mismatch negativity in healthy volunteers

  • Anna Bravermanová
  • Michaela Viktorinová
  • Filip Tylš
  • Tomáš Novák
  • Renáta Androvičová
  • Jakub Korčák
  • Jiří Horáček
  • Marie Balíková
  • Inga Griškova-Bulanova
  • Dominika Danielová
  • Přemysl Vlček
  • Pavel Mohr
  • Martin Brunovský
  • Vlastimil Koudelka
  • Tomáš Páleníček
Original Investigation

Abstract

Rationale

Disruption of auditory event-related evoked potentials (ERPs) P300 and mismatch negativity (MMN), electrophysiological markers of attentive and pre-attentive cognitive processing, is repeatedly described in psychosis and schizophrenia. Similar findings were observed in a glutamatergic model of psychosis, but the role of serotonergic 5-HT2A receptors in information processing is less clear.

Objectives

We studied ERPs in a serotonergic model of psychosis, induced by psilocybin, a psychedelic with 5-HT2A/C agonistic properties, in healthy volunteers.

Methods

Twenty subjects (10M/10F) were given 0.26 mg/kg of psilocybin orally in a placebo-controlled, double-blind, cross-over design. ERPs (P300, MMN) were registered during the peak of intoxication. Correlations between measured electrophysiological variables and psilocin serum levels and neuropsychological effects were also analyzed.

Results

Psilocybin induced robust psychedelic effects and psychotic-like symptoms, decreased P300 amplitude (p = 0.009) but did not affect the MMN. Psilocybin’s disruptive effect on P300 correlated with the intensity of the psychedelic state, which was dependent on the psilocin serum levels. We also observed a decrease in N100 amplitude (p = 0.039) in the P300 paradigm and a negative correlation between P300 and MMN amplitude (p = 0.014).

Conclusions

Even though pre-attentive cognition (MMN) was not affected, processing at the early perceptual level (N100) and in higher-order cognition (P300) was significantly disrupted by psilocybin. Our results have implications for the role of 5-HT2A receptors in altered information processing in psychosis and schizophrenia.

Keywords

Psilocybin Model of psychosis Human ERP MMN P300 

Notes

Acknowledgements

The authors would like to thank to Craig Hampson, BSc (Hons) for helpful comments and language correction. This work was supported by projects MICR VI20172020056, MHCR—DRO (NIMH-CZ, 00023752), NV15-33250A and by projects 260388/SVV/2017, PROGRES Q35 and LO1611 with a financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the NPU I program.

Supplementary material

213_2017_4807_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2.62 mb)

References

  1. Albrecht MA, Martin-Iverson MT, Price G, Lee J, Iyyalol R (2011) Dexamphetamine-induced reduction of P3a and P3b in healthy participants. J Psychopharmacology (Oxford, England) 25(12):1623–1631.  https://doi.org/10.1177/0269881110376686 CrossRefGoogle Scholar
  2. Bebbington P, Nayani T (1995) The psychosis screening questionnaire. Int J Methods Psychiatr Res 5:11–19Google Scholar
  3. Bramon E, Rabe-Hesketh S, Sham P, Murray RM, Frangou S (2004) Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr Res 70(2-3):315–329.  https://doi.org/10.1016/j.schres.2004.01.004 CrossRefPubMedGoogle Scholar
  4. Brockhaus-Dumke A, Schultze-Lutter F, Mueller R, Tendolkar I, Bechdolf A, Pukrop R, Klosterkoetter J, Ruhrmann S (2008) Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biol Psychiatry 64(5):376–384.  https://doi.org/10.1016/j.biopsych.2008.02.006 CrossRefPubMedGoogle Scholar
  5. Butcher JN, Graham JR, Fowler RD (1991) Special series: The MMPI-2. J Pers Assess 57(2):203–204.  https://doi.org/10.1207/s15327752jpa5702_1
  6. Carhart-Harris RL, Leech R, Erritzoe D, Williams TM, Stone JM, Evans J, Sharp DJ, Feilding A, Wise RG, Nutt DJ (2013) Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophr Bull 39(6):1343–1351.  https://doi.org/10.1093/schbul/sbs117 CrossRefPubMedGoogle Scholar
  7. Carhart-Harris RL, Leech R, Hellyer PJ, Shanahan M, Feilding A, Tagliazucchi E, Chialvo DR, Nutt D (2014) The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front Hum Neurosci 8:20.  https://doi.org/10.3389/fnhum.2014.00020
  8. Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, Tagliazucchi E, Schenberg EE, Nest T, Orban C, Leech R, Williams LT, Williams TM, Bolstridge M, Sessa B, McGonigle J, Sereno MI, Nichols D, Hellyer PJ, Hobden P, Evans J, Singh KD, Wise RG, Curran HV, Feilding A, Nutt DJ (2016) Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci U S A 113(17):4853–4858.  https://doi.org/10.1073/pnas.1518377113 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carter OL, Burr DC, Pettigrew JD, Wallis GM, Hasler F, Vollenweider FX (2005) Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci 17(10):1497–1508.  https://doi.org/10.1162/089892905774597191 CrossRefPubMedGoogle Scholar
  10. del Re EC, Spencer KM, Oribe N, Mesholam-Gately RI, Goldstein J, Shenton ME, Petryshen T, Seidman LJ, McCarley RW, Niznikiewicz MA (2015) Clinical high risk and first episode schizophrenia: auditory event-related potentials. Psychiatry Res 231(2):126–133.  https://doi.org/10.1016/j.pscychresns.2014.11.012 CrossRefPubMedGoogle Scholar
  11. Dittrich A (1998) The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry 31(Suppl 2):80–84.  https://doi.org/10.1055/s-2007-979351 CrossRefPubMedGoogle Scholar
  12. Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11(03):357.  https://doi.org/10.1017/S0140525X00058027 CrossRefGoogle Scholar
  13. Earls HA, Curran T, Mittal V (2016) A meta-analytic review of auditory event-related potential components as endophenotypes for schizophrenia: perspectives from first-degree relatives. Schizophr Bull 42(6):1504–1516.  https://doi.org/10.1093/schbul/sbw047 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ehrlichman RS, Maxwell CR, Majumdar S, Siegel SJ (2008) Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice. J Cogn Neurosci 20(8):1403–1414.  https://doi.org/10.1162/jocn.2008.20097 CrossRefPubMedGoogle Scholar
  15. Erickson MA, Ruffle A, Gold JM (2016) A meta-analysis of mismatch negativity in schizophrenia: from clinical risk to disease specificity and progression. Biol Psychiatry 79(12):980–987.  https://doi.org/10.1016/j.biopsych.2015.08.025 CrossRefPubMedGoogle Scholar
  16. Frohlich J, Van Horn JD (2014) Reviewing the ketamine model for schizophrenia. J Psychopharmacology (Oxford, England) 28(4):287–302.  https://doi.org/10.1177/0269881113512909 CrossRefGoogle Scholar
  17. Geyer MA (2015) Lysergic acid diethylamide and psilocybin revisited. Biol Psychiatry 78(8):516–518.  https://doi.org/10.1016/j.biopsych.2015.08.003 CrossRefPubMedGoogle Scholar
  18. Geyer MA, Vollenweider FX (2008) Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 29(9):445–453.  https://doi.org/10.1016/j.tips.2008.06.006 CrossRefPubMedGoogle Scholar
  19. Gjini K, Arfken C, Boutros NN (2010) Relationships between sensory “gating out” and sensory “gating in” of auditory evoked potentials in schizophrenia: a pilot study. Schizophr Res 121(1-3):139–145.  https://doi.org/10.1016/j.schres.2010.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gouzoulis-Mayfrank E, Schreckenberger M, Sabri O, Arning C, Thelen B, Spitzer M, Kovar KA, Hermle L, Bull U, Sass H (1999) Neurometabolic effects of psilocybin, 3,4-methylenedioxyethylamphetamine (MDE) and d-methamphetamine in healthy volunteers. A double-blind, placebo-controlled PET study with [18F]FDG. Neuropsychopharmacology 20(6):565–581.  https://doi.org/10.1016/S0893-133X(98)00089-X CrossRefPubMedGoogle Scholar
  21. Griffiths RR, Johnson MW, Richards WA, Richards BD, McCann U, Jesse R (2011) Psilocybin occasioned mystical-type experiences: immediate and persisting dose-related effects. Psychopharmacology 218(4):649–665.  https://doi.org/10.1007/s00213-011-2358-5 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gunduz-Bruce H, Reinhart RM, Roach BJ, Gueorguieva R, Oliver S, D'Souza DC, Ford JM, Krystal JH, Mathalon DH (2012) Glutamatergic modulation of auditory information processing in the human brain. Biol Psychiatry 71(11):969–977.  https://doi.org/10.1016/j.biopsych.2011.09.031 CrossRefPubMedGoogle Scholar
  23. Haigh SM, Coffman BA, Salisbury DF (2017) Mismatch negativity in first-episode schizophrenia: a meta-analysis. Clinical EEG Neurosci 48(1):3–10.  https://doi.org/10.1177/1550059416645980 CrossRefGoogle Scholar
  24. Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX (2004) Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology 172(2):145–156.  https://doi.org/10.1007/s00213-003-1640-6 CrossRefPubMedGoogle Scholar
  25. Heekeren K, Daumann J, Neukirch A, Stock C, Kawohl W, Norra C, Waberski TD, Gouzoulis-Mayfrank E (2008) Mismatch negativity generation in the human 5HT2A agonist and NMDA antagonist model of psychosis. Psychopharmacology 199(1):77–88.  https://doi.org/10.1007/s00213-008-1129-4 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Dockery C, Mohr P, Hoschl C (2006) Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS drugs 20(5):389–409.  https://doi.org/10.2165/00023210-200620050-00004 CrossRefPubMedGoogle Scholar
  27. Javitt DC, Sweet RA (2015) Auditory dysfunction in schizophrenia: integrating clinical and basic features. Nat Rev Neurosci 16(9):535–550.  https://doi.org/10.1038/nrn4002 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jeon YW, Polich J (2003) Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology 40(5):684–701.  https://doi.org/10.1111/1469-8986.00070 CrossRefPubMedGoogle Scholar
  29. Johnson M, Richards W, Griffiths R (2008) Human hallucinogen research: guidelines for safety. J Psychopharmacology (Oxford, England) 22(6):603–620.  https://doi.org/10.1177/0269881108093587 CrossRefGoogle Scholar
  30. Kahkonen S, Ahveninen J, Jaaskelainen IP, Kaakkola S, Naatanen R, Huttunen J, Pekkonen E (2001) Effects of haloperidol on selective attention: a combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology 25(4):498–504.  https://doi.org/10.1016/S0893-133X(01)00255-X CrossRefPubMedGoogle Scholar
  31. Kamata T, Nishikawa M, Katagi M, Tsuchihashi H (2005) Liquid chromatography-mass spectrometric and liquid chromatography-tandem mass spectrometric determination of hallucinogenic indoles psilocin and psilocybin in “magic mushroom” samples. J Forensic Sci 50(2):336–340CrossRefPubMedGoogle Scholar
  32. Kometer M, Schmidt A, Bachmann R, Studerus E, Seifritz E, Vollenweider FX (2012) Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol Psychiatry 72(11):898–906.  https://doi.org/10.1016/j.biopsych.2012.04.005 CrossRefPubMedGoogle Scholar
  33. Kometer M, Schmidt A, Jancke L, Vollenweider FX (2013) Activation of serotonin 2A receptors underlies the psilocybin-induced effects on alpha oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci : Off J Soc Neurosci 33(25):10544–10551.  https://doi.org/10.1523/JNEUROSCI.3007-12.2013 CrossRefGoogle Scholar
  34. Kraehenmann R, Preller KH, Scheidegger M, Pokorny T, Bosch OG, Seifritz E, Vollenweider FX (2015) Psilocybin-induced decrease in amygdala reactivity correlates with enhanced positive mood in healthy volunteers. Biol Psychiatry 78(8):572–581.  https://doi.org/10.1016/j.biopsych.2014.04.010 CrossRefPubMedGoogle Scholar
  35. Lee M, Sehatpour P, Hoptman MJ, Lakatos P, Dias EC, Kantrowitz JT, Martinez AM, Javitt DC (2017) Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Mol Psychiatry 22(11):1585–1593.  https://doi.org/10.1038/mp.2017.3
  36. Light GA, Braff DL (2005) Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch Gen Psychiatry 62(2):127–136.  https://doi.org/10.1001/archpsyc.62.2.127 CrossRefPubMedGoogle Scholar
  37. Marona-Lewicka D, Thisted RA, Nichols DE (2005) Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology 180(3):427–435.  https://doi.org/10.1007/s00213-005-2183-9 CrossRefPubMedGoogle Scholar
  38. Mueller SC (2011) The influence of emotion on cognitive control: relevance for development and adolescent psychopathology. Front Psychol 2:327.  https://doi.org/10.3389/fpsyg.2011.00327
  39. Musso F, Brinkmeyer J, Ecker D, London MK, Thieme G, Warbrick T, Wittsack HJ, Saleh A, Greb W, de Boer P, Winterer G (2011) Ketamine effects on brain function—simultaneous fMRI/EEG during a visual oddball task. NeuroImage 58(2):508–525.  https://doi.org/10.1016/j.neuroimage.2011.06.045 CrossRefPubMedGoogle Scholar
  40. Muthukumaraswamy SD, Carhart-Harris RL, Moran RJ, Brookes MJ, Williams TM, Errtizoe D, Sessa B, Papadopoulos A, Bolstridge M, Singh KD, Feilding A, Friston KJ, Nutt DJ (2013) Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci: Off J Soc Neurosci 33(38):15171–15183.  https://doi.org/10.1523/JNEUROSCI.2063-13.2013 CrossRefGoogle Scholar
  41. Näätänen R, Alho K (1995) Mismatch negativity—a unique measure of sensory processing in audition. Int J Neurosci 80(1-4):317–337.  https://doi.org/10.3109/00207459508986107 CrossRefPubMedGoogle Scholar
  42. Näätänen RS, Sussman E, Salisbury DL, Shafer V (2014) Mismatch negativity (MMN) as an index of cognitive dysfunction. Brain Topogr 27(4):451–466.  https://doi.org/10.1007/s10548-014-0374-6 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nekovarova T, Fajnerova I, Horacek J, Spaniel F (2014) Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory. Front Behav Neurosci 8:171.  https://doi.org/10.3389/fnbeh.2014.00171
  44. Nichols DE (2016) Psychedelics. Pharmacol Rev 68(2):264–355.  https://doi.org/10.1124/pr.115.011478 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Oranje B, van Berckel BN, Kemner C, van Ree JM, Kahn RS, Verbaten MN (2000) The effects of a sub-anaesthetic dose of ketamine on human selective attention. Neuropsychopharmacology 22(3):293–302.  https://doi.org/10.1016/S0893-133X(99)00118-9 CrossRefPubMedGoogle Scholar
  46. Overall JE, Hollister LE, Pichot P (1967) Major psychiatric disorders. A four-dimensional model Archives of general psychiatry 16(2):146–151.  https://doi.org/10.1001/archpsyc.1967.01730200014003 CrossRefPubMedGoogle Scholar
  47. Palenicek T, Balikova M, Bubenikova-Valesova V, Horacek J (2008) Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacology 196(1):51–62.  https://doi.org/10.1007/s00213-007-0926-5 CrossRefPubMedGoogle Scholar
  48. Palenicek T, Hlinak Z, Bubenikova-Valesova V, Novak T, Horacek J (2010) Sex differences in the effects of N,N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition. Prog Neuro-Psychopharmacol Biol Psychiatry 34(4):588–596.  https://doi.org/10.1016/j.pnpbp.2010.02.008 CrossRefGoogle Scholar
  49. Park EJ, Han SI, Jeon YW (2010) Auditory and visual P300 reflecting cognitive improvement in patients with schizophrenia with quetiapine: a pilot study. Prog Neuro-Psychopharmacol Biol Psychiatry 34(4):674–680.  https://doi.org/10.1016/j.pnpbp.2010.03.011 CrossRefGoogle Scholar
  50. Polich J (1987) Response mode and P300 from auditory stimuli. Biol Psychol 25(1):61–71.  https://doi.org/10.1016/0301-0511(87)90067-6 CrossRefPubMedGoogle Scholar
  51. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol : Off J Int Fed Clin Neurophysiol 118(10):2128–2148.  https://doi.org/10.1016/j.clinph.2007.04.019 CrossRefGoogle Scholar
  52. Polich J, Criado JR (2006) Neuropsychology and neuropharmacology of P3a and P3b. Int J Psychophysiol 60(2):172–185.  https://doi.org/10.1016/j.ijpsycho.2005.12.012 CrossRefPubMedGoogle Scholar
  53. Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41(2):103–146.  https://doi.org/10.1016/0301-0511(95)05130-9 CrossRefPubMedGoogle Scholar
  54. Qiu YQ, Tang YX, Chan RC, Sun XY, He J (2014) P300 aberration in first-episode schizophrenia patients: a meta-analysis. PLoS One 9(6):e97794.  https://doi.org/10.1371/journal.pone.0097794 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Quednow BB, Kometer M, Geyer MA, Vollenweider FX (2012) Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology 37(3):630–640.  https://doi.org/10.1038/npp.2011.228 CrossRefPubMedGoogle Scholar
  56. Rambousek L, Palenicek T, Vales K, Stuchlik A (2014) The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat. Front Behav Neurosci 8:180.  https://doi.org/10.3389/fnbeh.2014.00180
  57. Rolls ET, Loh M, Deco G, Winterer G (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9(9):696–709.  https://doi.org/10.1038/nrn2462 CrossRefPubMedGoogle Scholar
  58. Rosburg T, Boutros NN, Ford JM (2008) Reduced auditory evoked potential component N100 in schizophrenia—a critical review. Psychiatry Res 161(3):259–274.  https://doi.org/10.1016/j.psychres.2008.03.017 CrossRefPubMedGoogle Scholar
  59. Rosburg T, Kreitschmann-Andermahr I (2016) The effects of ketamine on the mismatch negativity (MMN) in humans—a meta-analysis. Clin Neurophysiol 127(2):1387–1394.  https://doi.org/10.1016/j.clinph.2015.10.062 CrossRefPubMedGoogle Scholar
  60. Salisbury DF, Polizzotto NR, Nestor PG, Haigh SM, Koehler J, McCarley RW (2017) Pitch and duration mismatch negativity and premorbid intellect in the first hospitalized schizophrenia spectrum. Schizophr Bull 43(2):407–416.  https://doi.org/10.1093/schbul/sbw074 PubMedGoogle Scholar
  61. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33 quiz 34-57PubMedGoogle Scholar
  62. Schmidt A, Bachmann R, Kometer M, Csomor PA, Stephan KE, Seifritz E, Vollenweider FX (2012) Mismatch negativity encoding of prediction errors predicts S-ketamine-induced cognitive impairments. Neuropsychopharmacology 37(4):865–875.  https://doi.org/10.1038/npp.2011.261 CrossRefPubMedGoogle Scholar
  63. Silber B, Croft R, Camfield DA, Downey LA, Papafotiou K, Stough C (2012) The acute effects of d-amphetamine and d-methamphetamine on ERP components in humans. Eur Neuropsychopharmacol 22(7):492–500.  https://doi.org/10.1016/j.euroneuro.2011.11.009 CrossRefPubMedGoogle Scholar
  64. Sticht G, Kaferstein H (2000) Detection of psilocin in body fluids. Forensic Sci Int 113(1-3):403–407.  https://doi.org/10.1016/S0379-0738(00)00213-9 CrossRefPubMedGoogle Scholar
  65. Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994) Dose-response study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51(2):98–108.  https://doi.org/10.1001/archpsyc.1994.03950020022002 CrossRefPubMedGoogle Scholar
  66. Sumiyoshi T, Higuchi Y, Uehara T (2013) Neural basis for the ability of atypical antipsychotic drugs to improve cognition in schizophrenia. Front Behav Neurosci 7:140.  https://doi.org/10.3389/fnbeh.2013.00140
  67. Sur S, Sinha VK (2009) Event-related potential: an overview. Ind Psychiatry J 18(1):70–73.  https://doi.org/10.4103/0972-6748.57865 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science (New York, NY) 150(3700):1187–1188.  https://doi.org/10.1126/science.150.3700.1187 CrossRefGoogle Scholar
  69. Tikhonravov D, Neuvonen T, Pertovaara A, Savioja K, Ruusuvirta T, Naatanen R, Carlson S (2008) Effects of an NMDA-receptor antagonist MK-801 on an MMN-like response recorded in anesthetized rats. Brain Res 1203:97–102.  https://doi.org/10.1016/j.brainres.2008.02.006 CrossRefPubMedGoogle Scholar
  70. Timmermann C, Spriggs MJ, Kaelen M, Leech R, Nutt DJ3, Moran RJ, Carhart-Harris RL, Muthukumaraswamy SD (2017) LSD modulates effective connectivity and neural adaptation mechanisms in an auditory oddball paradigm. Neuropharmacology [Epub ahead of print].  https://doi.org/10.1016/j.neuropharm.2017.10.039
  71. Tyls F, Palenicek T, Horacek J (2014) Psilocybin--summary of knowledge and new perspectives. Eur Neuropsychopharmacol 24(3):342–356.  https://doi.org/10.1016/j.euroneuro.2013.12.006 CrossRefPubMedGoogle Scholar
  72. Tyls F, Palenicek T, Kaderabek L, Lipski M, Kubesova A, Horacek J (2016) Sex differences and serotonergic mechanisms in the behavioural effects of psilocin. Behav Pharmacol 27(4):309–320.  https://doi.org/10.1097/FBP.0000000000000198 CrossRefPubMedGoogle Scholar
  73. Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76(1):1–23.  https://doi.org/10.1016/j.schres.2004.12.002 CrossRefPubMedGoogle Scholar
  74. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57(12):1139–1147.  https://doi.org/10.1001/archpsyc.57.12.1139 CrossRefPubMedGoogle Scholar
  75. Umbricht D, Vollenweider FX, Schmid L, Grubel C, Skrabo A, Huber T, Koller R (2003) Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia. Neuropsychopharmacology 28(1):170–181.  https://doi.org/10.1038/sj.npp.1300005 CrossRefPubMedGoogle Scholar
  76. Uyeno ET (1968) Hallucinogenic compounds and swimming response. J Pharmacol Exp Ther 159(1):216–221PubMedGoogle Scholar
  77. van Dinteren R, Arns M, Jongsma ML, Kessels RP (2014) P300 development across the lifespan: a systematic review and meta-analysis. PLoS One 9(2):e87347.  https://doi.org/10.1371/journal.pone.0087347 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9(17):3897–3902.  https://doi.org/10.1097/00001756-199812010-00024 CrossRefPubMedGoogle Scholar
  79. Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27(11):683–690.  https://doi.org/10.1016/j.tins.2004.08.002 CrossRefPubMedGoogle Scholar
  80. Wittmann M (2015) Modulations of the experience of self and time. Conscious Cogn 38:172–181.  https://doi.org/10.1016/j.concog.2015.06.008 CrossRefPubMedGoogle Scholar
  81. Zhang Y, Lehmann M, Shobeiry A, Hofer D, Johannes S, Emrich HM, Dietrich DE (2009) Effects of quetiapine on cognitive functions in schizophrenic patients: a preliminary single-trial ERP analysis. Pharmacopsychiatry 42(04):129–134.  https://doi.org/10.1055/s-0028-1112133 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anna Bravermanová
    • 1
    • 2
  • Michaela Viktorinová
    • 1
    • 3
  • Filip Tylš
    • 1
    • 3
  • Tomáš Novák
    • 1
    • 3
  • Renáta Androvičová
    • 1
    • 3
  • Jakub Korčák
    • 1
    • 3
  • Jiří Horáček
    • 1
    • 3
  • Marie Balíková
    • 2
  • Inga Griškova-Bulanova
    • 4
  • Dominika Danielová
    • 1
    • 3
  • Přemysl Vlček
    • 1
    • 3
  • Pavel Mohr
    • 1
    • 3
  • Martin Brunovský
    • 1
    • 3
  • Vlastimil Koudelka
    • 1
  • Tomáš Páleníček
    • 1
    • 3
  1. 1.National Institute of Mental HealthKlecanyCzech Republic
  2. 2.First Faculty of MedicineCharles University PraguePrague 2Czech Republic
  3. 3.Third Faculty of MedicineCharles University PraguePraha 10Czech Republic
  4. 4.Institute of BiosciencesVilnius UniversityVilniusLithuania

Personalised recommendations