Skip to main content
Log in

Initial deficit and recovery of function after MDMA preexposure in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

3,4-methylenedioxymethamphetamine (MDMA) exposure was reported to result in deficits in serotonergic neurotransmission with concomitant behavioral suppression and tolerance to MDMA. Some data have also suggested that the neurochemical deficits recover over time, raising the question as to whether behavioral suppression would show a similar recovery.

Objectives

The possibility of recovery of behavioral deficits was examined in the present study. Rats were administered an MDMA pretreatment regimen that was shown to produce numerous serotonergic deficits and behavioral suppression 2 weeks thereafter. The full expression of MDMA-produced hyperactivity was dependent upon serotonergic integrity, therefore, the present study aimed to determine whether MDMA pretreated rats were tolerant to MDMA 2 weeks after exposure. Further, because serotonergic deficits have shown recovery over time, similar behavioral tests were conducted at a later time point to determine whether functional recovery was evident.

Methods

MDMA-produced hyperactivity was measured at different withdrawal periods (2 and 12 weeks) to determine initial effects and the possibility of recovery of function.

Results

In saline-pretreated control rats, +/−MDMA (0.0–10.0 mg/kg) produced a dose-dependent increase in locomotor activity. Rats that had received prior exposure to MDMA (4×10 mg/kg MDMA injections administered at 2 h intervals) demonstrated tolerance when the activity was measured 2 weeks after pretreatment. For these rats, there was a downward shift in the dose–effect curve for MDMA-produced hyperactivity. MDMA-produced hyperactivity in rats that were tested 12 weeks after pretreatment was, however, comparable to controls, suggesting recovery of function.

Conclusion

These data are consistent with the idea that high dose MDMA exposure produces neuroadaptations that exhibit recovery with extended abstinence from the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21:16S–23S

    PubMed  CAS  Google Scholar 

  • Aguirre N, Galbete JL, Lasheras B, Del Rio J (1995) Methylenedioxymethamphetamine induces opposite changes in central pre- and postsynaptic 5-HT1A receptors in rats. Eur J Pharmacol 281:101–105

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G, Yeh SY, O’Hearn E, Molliver ME, Kuhar MJ, De Souza EB (1987) 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites. J Pharmacol Exp Ther 242:911–916

    PubMed  CAS  Google Scholar 

  • Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB (1988) Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149:159–163

    Article  PubMed  CAS  Google Scholar 

  • Bengel D, Murphy, DL, Andrews, AM, Wichems, CH, Feltner, D, Heils, A, Mossner R, Westphal H, Lesch KP (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine (“ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53:649–655

    PubMed  CAS  Google Scholar 

  • Berger UV, Gu XF, Azmitia EC (1992) The substituted amphetamines 3,4-methylenedioxymethamphetamine, methamphetamine, p-chloroamphetamine and fenfluramine induce 5-hydroxytryptamine release via a common mechanism blocked by fluoxetine and cocaine. Eur J Pharmacol 215:153–160

    Article  PubMed  CAS  Google Scholar 

  • Bolla KI, McCann UD, Ricaurte GA (1998) Memory impairment in abstinent MDMA (“ecstasy”) users. Neurology 51:1532–1537

    PubMed  CAS  Google Scholar 

  • Boot BP, Mechan AO, McCann UD, Ricaurte GA (2002) MDMA- and p-chlorophenylalanine-induced reduction in 5-HT concentrations: effects on serotonin transporter densities. Eur J Pharmacol 453:239–244

    Article  PubMed  CAS  Google Scholar 

  • Brodkin J, Malyala A, Nash JF (1993) Effect of acute monoamine depletion on 3,4-methylenedioxymethamphetamine-induced neurotoxicity. Pharmacol Biochem Behav 45:647–653

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Molliver ME (2000) Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine-induced neurotoxicity. J Neurosci 20:1952–1963

    PubMed  CAS  Google Scholar 

  • Buchert R, Thomasius R, Nebeling B, Petersen K, Obrocki J, Jenicke L, Wilke F, Wartberg L, Zapletalova P, Clausen M (2003) Long-term effects of “ecstasy” use on serotonin transporters of the brain investigated by PET. J Nucl Med 44:375–384

    PubMed  CAS  Google Scholar 

  • Callaway CW, Geyer MA (1992a) Tolerance and cross-tolerance to the activating effects of 3,4-methylenedioxymethamphetamine and a 5-hydroxytryptamine1B agonist. J Pharmacol Exp Ther 263:318–326

    PubMed  CAS  Google Scholar 

  • Callaway CW, Geyer MA (1992b) Stimulant effects of 3,4-methylenedioxymethamphetamine in the nucleus accumbens of rat. Eur J Pharmacol 214:45–51

    Article  PubMed  CAS  Google Scholar 

  • Callaway CW, Wing LL, Geyer MA (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254:456–464

    PubMed  CAS  Google Scholar 

  • Clemens KJ, Van Nieuwenhuyzen PS, Li KM, Cornish JL, Hunt GE, McGregor IS (2004) MDMA (“ecstasy”), methamphetamine and their combination: long-term changes in social interaction and neurochemistry in the rat. Psychopharmacology (Berl) 173:318–325

    Article  CAS  Google Scholar 

  • Colado MI, Green AR (1995) The spin trap reagent alpha-phenyl-N-tert-butyl nitrone prevents ‘ecstasy’-induced neurodegeneration of 5-hydroxytryptamine neurones. Eur J Pharmacol 280:343–346

    Article  PubMed  CAS  Google Scholar 

  • Colado MI, Granados R, O’Shea E, Esteban B, Green AR (1999) The acute effect in rats of 3,4-methylenedioxyethamphetamine (MDEA, “eve”) on body temperature and long term degeneration of 5-HT neurones in brain: a comparison with MDMA (“ecstasy”). Pharmacol Toxicol 84:261–266

    Article  PubMed  CAS  Google Scholar 

  • Colado MI, O’Shea E, Green AR (2004) Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology (Berl) 173:249–263

    Article  CAS  Google Scholar 

  • Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS (1987) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 241:338–345

    PubMed  CAS  Google Scholar 

  • Dafters RI (1995) Hyperthermia following MDMA administration in rats: effects of ambient temperature, water consumption, and chronic dosing. Physiol Behav 58:877–882

    Article  PubMed  CAS  Google Scholar 

  • Fischer C, Hatzidimitriou G, Wlos J, Katz J, Ricaurte G (1995) Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+/−)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurosci 15:5476–5485

    PubMed  CAS  Google Scholar 

  • Fitzgerald JL, Reid JJ (1990) Effects of methylenedioxymethamphetamine on the release of monoamines from rat brain slices. Eur J Pharmacol 191:217–220

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Grottick JA, Higgins GA (2002) Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology 27:576–586

    PubMed  CAS  Google Scholar 

  • Garcia-Osta A, Del Rio J, Frechilla D (2004) Increased CRE-binding activity and tryptophan hydroxylase mRNA expression induced by 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) in the rat frontal cortex but not in the hippocampus. Brain Res Mol Brain Res 126:181–187

    Article  PubMed  CAS  Google Scholar 

  • Gough B, Ali SF, Slikker W Jr, Holson RR (1991) Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on monoamines in rat caudate Pharmacol Biochem Behav 39:619–623

    Article  PubMed  CAS  Google Scholar 

  • Green AR, O’Shea E, Colado MI (2004) A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. Eur J Pharmacol 500:3–13

    Article  PubMed  CAS  Google Scholar 

  • Gudelsky GA, Nash JF (1996) Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin–dopamine interactions. J Neurochem 66:243–249

    Article  PubMed  CAS  Google Scholar 

  • Hekmatpanah CR, Peroutka SJ (1990) 5-hydroxytryptamine uptake blockers attenuate the 5-hydroxytryptamine-releasing effect of 3,4-methylenedioxymethamphetamine and related agents. Eur J Pharmacol 177:95–98

    Article  PubMed  CAS  Google Scholar 

  • Herin DV, Liu S, Ullrich T, Rice KC, Cunningham KA (2005) Role of the serotonin 5-HT2A receptor in the hyperlocomotive and hyperthermic effects of ()−3,4-methylenedioxymethamphetamine. Psychopharmacology (Berl) 178:505–513

    Article  CAS  Google Scholar 

  • Insel TR, Battaglia G, Johannessen JN, Marra S, De Souza EB (1989) 3,4-Methylenedioxymethamphetamine (“ecstasy”) selectively destroys brain serotonin terminals in rhesus monkeys. J Pharmacol Exp Ther 249:713–720

    PubMed  CAS  Google Scholar 

  • Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 95:735–740

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P, White SR (1998) MDMA elicits behavioral and neurochemical sensitization in rats. Neuropsychopharmacology 18:469–479

    Article  PubMed  CAS  Google Scholar 

  • Kehne JH, Ketteler HJ, McCloskey TC, Sullivan CK, Dudley MW, Schmidt CJ (1996) Effects of the selective 5-HT2A receptor antagonist MDL 100,907 on MDMA-induced locomotor stimulation in rats. Neuropsychopharmacology 15:116–124

    Article  PubMed  CAS  Google Scholar 

  • Lew R, Sabol KE, Chou C, Vosmer GL, Richards J, Seiden LS (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part II: Radioligand binding and autoradiography studies. J Pharmacol Exp Ther 276:855–865

    PubMed  CAS  Google Scholar 

  • Liechti ME, Vollenweider FX (2001) Which neuroreceptors mediate the subjective effects of MDMA in humans? A summary of mechanistic studies. Hum Psychopharmacol 16:589–598

    Article  PubMed  CAS  Google Scholar 

  • Liechti ME, Saur MR, Gamma A, Hell D, Vollenweider FX (2000a) Psychological and physiological effects of MDMA (“ecstasy”) after pretreatment with the 5-HT(2) antagonist ketanserin in healthy humans. Neuropsychopharmacology 23:396–404

    Article  PubMed  CAS  Google Scholar 

  • Liechti ME, Baumann C, Gamma A, Vollenweider FX (2000b) Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology 22:513–521

    Article  PubMed  CAS  Google Scholar 

  • Liechti ME, Geyer MA, Hell D, Vollenweider FX (2001) Effects of MDMA (ecstasy) on prepulse inhibition and habituation of startle in humans after pretreatment with citalopram, haloperidol, or ketanserin. Neuropsychopharmacology 24:240–252

    Article  PubMed  CAS  Google Scholar 

  • Lyles J, Cadet JL (2003) Methylenedioxymethamphetamine (MDMA, ecstasy) neurotoxicity: cellular and molecular mechanisms. Brain Res Brain Res Rev 42:155–168

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer A, Kovar KA, Schmidt WJ (2001) Changes in serotonin, dopamine and noradrenaline levels in striatum and nucleus accumbens after repeated administration of the abused drug MDMA in rats. Neurosci Lett 308:99–102

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Ridenour A, Shaham Y, Ricaurte GA (1994) Serotonin neurotoxicity after (+/−)3,4-methylenedioxymethamphetamine (MDMA; “ecstasy”): a controlled study in humans. Neuropsychopharmacology 10:129–138

    PubMed  CAS  Google Scholar 

  • McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA, (1998) Positron emission tomographic evidence of toxic effect of MDMA (“ecstasy”) on brain serotonin neurons in human beings. Lancet 352:1433–1437

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Mertl M, Eligulashvili V, Ricaurte GA (1999) Cognitive performance in (+/−) 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) users: a controlled study. Psychopharmacology (Berl) 143:417–425

    Article  CAS  Google Scholar 

  • McCreary AC, Bankson MG, Cunningham KA (1999) Pharmacological studies of the acute and chronic effects of ()−3,4-methylenedioxymethamphetamine on locomotor activity: role of 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B/1D) receptors. J Pharmacol Exp Ther 290:965–973

    PubMed  CAS  Google Scholar 

  • McGregor IS, Clemens KJ, Van der Plasse G, Li KM, Hunt GE, Chen F, Lawrence AJ (2003) Increased anxiety 3 months after brief exposure to MDMA (“ecstasy”) in rats: association with altered 5-HT transporter and receptor density. Neuropsychopharmacology 28:1472–1484

    Article  PubMed  CAS  Google Scholar 

  • McNamara MG, Kelly JP, Leonard BE (1995) Some behavioural and neurochemical aspects of subacute (+/−)3,4-methylenedioxymethamphetamine administration in rats. Pharmacol Biochem Behav 52:479–484

    Article  PubMed  CAS  Google Scholar 

  • Mokler DJ, Robinson SE, Rosecrans JA (1987) (+/−)3,4-Methylenedioxymethamphetamine (MDMA) produces long-term reductions in brain 5-hydroxytryptamine in rats. Eur J Pharmacol 138:265–268

    Article  PubMed  CAS  Google Scholar 

  • Molliver ME, Berger UV, Mamounas LA, Molliver DC, O’Hearn E, Wilson MA (1990) Neurotoxicity of MDMA and related compounds: anatomic studies. Ann NY Acad Sci 600:600–664

    Article  Google Scholar 

  • Nelson DL, Lucaites VL, Wainscott DB, Glennon RA (1999) Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, -HT(2B) and 5-HT2C receptors. Naunyn Schmiedebergs Arch Pharmacol 359:1–6

    Article  PubMed  CAS  Google Scholar 

  • O’Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8:2788–2803

    PubMed  CAS  Google Scholar 

  • O’Shea E, Granados R, Esteban B, Colado MI, Green AR (1998) The relationship between the degree of neurodegeneration of rat brain 5-HT nerve terminals and the dose and frequency of administration of MDMA (‘ecstasy’). Neuropharmacology 37:919–926

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC (2005) Chronic tolerance to recreational MDMA (3,4-methylenedioxymethamphetamine) or ecstasy. J Psychopharmacol 19:71–83

    Article  PubMed  CAS  Google Scholar 

  • Ramos M, Goni-Allo B, Aguirre N (2004) Studies on the role of dopamine D1 receptors in the development and expression of MDMA-induced behavioral sensitization in rats. Psychopharmacology (Berl) 177:100–110

    Article  CAS  Google Scholar 

  • Ramos M, Goni-Allo B, Aguirre N (2005) Administration of SCH 23390 into the medial prefrontal cortex blocks the expression of MDMA-induced behavioral sensitization in rats: an effect mediated by 5-HT(2C) receptor stimulation and not by D(1) receptor blockade. Neuropsychopharmacology 30:2180–2191

    Article  PubMed  CAS  Google Scholar 

  • Reneman, L, Endert E, de Bruin K, Lavalaye J, Feenstra MG, de Wolff FA, Booij J (2002) The acute and chronic effects of MDMA (“ecstasy”) on cortical 5-HT2A receptors in rat and human brain. Neuropsychopharmacology 26:387–396

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, DeLanney LE, Irwin I, Langston JW (1988a) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res 446:165–168

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, DeLanney LE, Wiener SG, Irwin I, Langston JW (1988b) 5-Hydroxyindoleacetic acid in cerebrospinal fluid reflects serotonergic damage induced by 3,4-methylenedioxymethamphetamine in CNS of non-human primates. Brain Res 474:359–363

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME, Langston JW (1988c) (+/–)3,4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260:51–55

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G, Wall SC (1992) The molecular mechanism of “ecstasy” [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci USA 89:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Sabol KE, Lew R, Richards JB, Vosmer GL, Seiden LS (1996) Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. Part I: Synaptosomal uptake and tissue concentrations. J Pharmacol Exp Ther 276:846–854

    PubMed  CAS  Google Scholar 

  • Scanzello CR, Hatzidimitriou G, Martello AL, Katz JL, Ricaurte GA (1993) Serotonergic recovery after (+/−)3,4-(methylenedioxy) methamphetamine injury: observations in rats. J Pharmacol Exp Ther 264:1484–1491

    PubMed  CAS  Google Scholar 

  • Scheffel U, Szabo Z, Mathews WB, Finley PA, Dannals RF, Ravert HT, Szabo K, Yuan J, Ricaurte GA (1998) In vivo detection of short- and long-term MDMA neurotoxicity—a positron emission tomography study in the living baboon brain. Synapse 29:183–192

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Taylor VL (1987) Depression of rat brain tryptophan hydroxylase activity following the acute administration of methylenedioxymethamphetamine. Biochem Pharmacol 36:4095–4102

    Article  PubMed  CAS  Google Scholar 

  • Schmued LC (2003) Demonstration and localization of neuronal degeneration in the rat forebrain following a single exposure to MDMA. Brain Res 974:127–133

    Article  PubMed  CAS  Google Scholar 

  • Scholey AB, Parrott AC, Buchanan T, Heffernan TM, Ling J, Rodgers J (2004) Increased intensity of ecstasy and polydrug usage in the more experienced recreational ecstasy/MDMA users: a WWW study. Addict Behav 29:743–752

    Article  PubMed  Google Scholar 

  • Semple DM, Ebmeier KP, Glabus MF, O’Carroll RE, Johnstone EC (1999) Reduced in vivo binding to the serotonin transporter in the cerebral cortex of MDMA (‘ecstasy’) users. Br J Psychiatry 175:63–69

    PubMed  CAS  Google Scholar 

  • Sexton TJ, McEvoy C, Neumaier JF (1999) () 3,4-Methylenedioxymethamphetamine (‘ecstasy’) transiently increases striatal 5-HT1B binding sites without altering 5-HT1B mRNA in rat brain. Mol Psychiatry 4:572–579

    Article  PubMed  CAS  Google Scholar 

  • Shankaran M, Gudelsky GA (1999) A neurotoxic regimen of MDMA suppresses behavioral, thermal and neurochemical responses to subsequent MDMA administration. Psychopharmacology (Berl) 147:66–72

    Article  CAS  Google Scholar 

  • Spanos LJ, Yamamoto BK (1989) Acute and subchronic effects of methylenedioxymethamphetamine [(+/−)MDMA] on locomotion and serotonin syndrome behavior in the rat. Pharmacol Biochem Behav 32:835–840

    Article  PubMed  CAS  Google Scholar 

  • Stone DM, Merchant KM, Hanson GR, Gibb JW (1987) Immediate and long-term effects of 3,4-methylenedioxymethamphetamine on serotonin pathways in brain of rat. Neuropharmacology 26:1677–1683

    Article  PubMed  CAS  Google Scholar 

  • Stone DM, Hanson GR, Gibb JW (1989a) In vitro reactivation of rat cortical tryptophan hydroxylase following in vivo inactivation by methylenedioxymethamphetamine. J Neurochem 53:572–581

    Article  PubMed  CAS  Google Scholar 

  • Stone DM, Johnson M, Hanson GR, Gibb JW (1989b) Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves the oxidation of sulfhydryl sites. Eur J Pharmacol 172:93–97

    Article  PubMed  CAS  Google Scholar 

  • Sumnall HR, O’Shea E, Marsden CA, Cole JC (2004) The effects of MDMA pretreatment on the behavioural effects of other drugs of abuse in the rat elevated plus–maze test. Pharmacol Biochem Behav 77:805–814

    Article  PubMed  CAS  Google Scholar 

  • Thomasius R, Petersen K, Buchert R, Andresen B, Zapletalova P, Wartberg L, Nebeling B, Schmoldt A (2003) Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users. Psychopharmacology (Berl) 167:85–96

    CAS  Google Scholar 

  • Verheyden SL, Henry JA, Curran HV (2003) Acute, sub-acute and long-term subjective consequences of ‘ecstasy’ (MDMA) consumption in 430 regular users. Hum Psychopharmacol 18:507–517

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Baumann MH, Xu H, Rothman RB (2004) 3,4-methylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Synapse 53:240–248

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Baumann MH, Xu H, Morales M, Rothman RB (2005) ({+/-})-3,4-Methylenedioxymethamphetamine (MDMA) administration to rats does not decrease levels of the serotonin transporter protein or alter its distribution between endosomes and the plasma membrane. J Pharmacol Exp Ther 314:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • White SR, Obradovic T, Imel KM, Wheaton MJ (1996) The effects of methylenedioxymethamphetamine (MDMA, “ecstasy”) on monoaminergic neurotransmission in the central nervous system. Prog Neurobiol 49:455–479

    Article  PubMed  CAS  Google Scholar 

  • Yau JL, Kelly, PA, Sharkey J, Seckl JR (1994) Chronic 3,4-methylenedioxymethamphetamine administration decreases glucocorticoid and mineralocorticoid receptor, but increases 5-hydroxytryptamine1C receptor gene expression in the rat hippocampus. Neuroscience 61:31–40

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Lottery Health Foundation, Neurological Foundation of New Zealand, and the School of Psychology at Victoria University in Wellington, NZ. The authors greatly acknowledge the technical assistance of Richard Moore, Evangeline Daniela, and David Gittings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, K.A., Schenk, S. Initial deficit and recovery of function after MDMA preexposure in rats. Psychopharmacology 184, 239–246 (2006). https://doi.org/10.1007/s00213-005-0278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0278-y

Keywords

Navigation