Skip to main content
Log in

Super-convergence and post-processing for mixed finite element approximations of the wave equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the numerical approximation of acoustic wave propagation problems by mixed \(\text {BDM}_{k+1}\)\(\text {P}_k\) finite elements on unstructured meshes. Optimal convergence of the discrete velocity and super-convergence of the pressure are established. Based on these results, we propose a post-processing strategy that allows us to construct an improved pressure approximation from the numerical solution. Corresponding results are well-known for mixed finite element approximations of elliptic problems and we extend these analyses here to the hyperbolic problem under consideration. We also consider the subsequent time discretization by the Crank–Nicolson method and show that the analysis and the post-processing strategy can be generalized to the fully discrete schemes. Our proofs do not rely on duality arguments or inverse inequalities and the results therefore also apply for non-convex domains and non-uniform meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Model. Math. Anal. Numer. 19, 7–32 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker, G.A.: Error estimates for finite element approximations for second order hyperbolic equations. SIAM J. Numer. Anal. 13, 564–576 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, G.A., Bramble, J.H.: Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numer. 13, 75–100 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bangerth, W., Rannacher, R.: Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 1, 1–17 (1999)

    MATH  Google Scholar 

  5. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed Finite Elements, Compatibility Conditions, and Applications, Lecture Notes in Mathematics, vol. 1939. Springer, Fondazione C.I.M.E., Berlin, Florence (2008)

    Book  Google Scholar 

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  7. Brezzi, F., Douglas, J., Duràn, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 47, 237–250 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed elements for second order elliptic problems. Numer. Math. 88, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y.: Global superconvergence for a mixed finite element method for the wave equation. Syst. Sci. Math. Sci. 12, 159–165 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Chen, Y., Huan, Y.: The superconvergence of mixed finite element methods for nonlinear hyperbolic equations. Numer. Simul. 3, 155–158 (1998)

    Article  MathSciNet  Google Scholar 

  11. Chen, Z.: Superconvergence results for Galerkin methods for wave propagation in various porous media. Numer. Methods Partial Differ. Equ. 12, 99–122 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen, G.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  13. Cohen, G., Joly, O., Roberts, J.E., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38, 2047–2078 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal. 33, 492–504 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Douglas, J., Dupont, T., Wheeler, M.F.: A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations. Math. Comput. 32, 345–362 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dupont, T.: \(l^2\) estimates for Galerkin methods for second-order hyperbolic equations. SIAM J. Numer. Anal. 10, 880–889 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  18. Geveci, T.: On the application of mixed finite element methods to the wave equations. RAIRO Model. Mathods Anal. Numer. 22, 243–250 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jenkins, E.W., Rivière, T., Wheeler, M.F.: A priori error estimates for mixed finite element approximations of the acoustic wave equation. SIAM J. Numer. Anal. 40, 1698–1715 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Joly, P.: Variational methods for time-dependent wave propagation problems. In: Ainsworth, M., Davies, P., Duncan, D., Martin, P., Rynne, B. (eds.) Topics in Computational Wave Propagation, LNCSE, vol. 31, pp. 201–264. Springer, Berlin

  21. Karaa, S.: Error estimates for finite element approximations of a viscous wave equation. Numer. Func. Anal. Optim. 32, 750–767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: Course of theoretical physics, vol. 6, 2nd edn. Pergamon Press, Oxford, 1987. Fluid mechanics, Translated from the third Russian edition by J. B. Sykes and W. H. Reid

  23. Makridakis, C.G.: On mixed finite element methods for linear elastodynamics. Numer. Math. 61, 235–260 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Makridakis, C.G., Monk, P.: Time-discrete finite element schemes for Maxwell’s equations. RAIRO Model. Mathods Anal. Numer. 29, 171–197 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Monk, P.: Analysis of a finite element methods for Maxwell’s equations. SIAM J. Numer. Anal. 29, 714–729 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  27. Schöberl, J.: Commuting quasi-interpolation operators for mixed finite elements. Isc-01-10-math, Institute for Scientific Computing, Texas A&M University (2001)

  28. Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Model. Mathods Anal. Numer. 25, 151–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, F., Chen, Y., Tang, Y.: Superconvergence of fully discrete splitting positive definite mixed FEM for hyperbolic equations. Numer. Methods Partial Differ. Equ. 30, 175–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, X., Bathe, K.-J.: Displacement/pressure based mixed finite element formulations for acoustic fluid–structure interaction problems. Int. J. Numer. Methods Eng. 40, 2001–2017 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support by the German Research Foundation (DFG) via Grants IRTG 1529 and TRR 154 project C4, and by the “Excellence Initiative” of the German Federal and State Governments via the Graduate School of Computational Engineering GSC 233 at Technische Universität Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Egger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egger, H., Radu, B. Super-convergence and post-processing for mixed finite element approximations of the wave equation. Numer. Math. 140, 427–447 (2018). https://doi.org/10.1007/s00211-018-0966-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0966-2

Mathematics Subject Classification

Navigation