Numerische Mathematik

, Volume 140, Issue 1, pp 239–264 | Cite as

A fast sparse grid based space–time boundary element method for the nonstationary heat equation

  • Helmut Harbrecht
  • Johannes Tausch


This article presents a fast sparse grid based space–time boundary element method for the solution of the nonstationary heat equation. We make an indirect ansatz based on the thermal single layer potential which yields a first kind integral equation. This integral equation is discretized by Galerkin’s method with respect to the sparse tensor product of the spatial and temporal ansatz spaces. By employing the \(\mathcal {H}\)-matrix and Toeplitz structure of the resulting discretized operators, we arrive at an algorithm which computes the approximate solution in a complexity that essentially corresponds to that of the spatial discretization. Nevertheless, the convergence rate is nearly the same as in case of a traditional discretization in full tensor product spaces.

Mathematics Subject Classification

35K20 65F50 65M38 


  1. 1.
    Balder, R., Zenger, C.: The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17(3), 631–646 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bungartz, H.J.: A multigrid algorithm for higher order finite elements on sparse grids. ETNA Electron. Trans. Numer. Anal. 6, 63–77 (1997)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chernov, A., Pham, D.: Sparse spectral BEM for elliptic problems with random input data on a spheroid. Adv. Comput. Math. 41(1), 77–104 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chernov, A., Schwab, C.: Sparse space–time Galerkin BEM for the nonstationary heat equation. ZAMM Z. Angew. Math. Mech. 93, 403–413 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Costabel, M.: Boundary integral operators for the heat equation. Integral Equ. Oper. Theory 13, 498–552 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Griebel, M., Harbrecht, H.: On the construction of sparse tensor product spaces. Math. Comput. 82, 975–994 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Griebel, M., Oeltz, D.: A sparse grid space–time discretization scheme for parabolic problems. Computing 81, 1–34 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Griebel, M., Oswald, P., Schiekofer, T.: Sparse grids for boundary integral equations. Numer. Math. 83(2), 279–312 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hackbusch, W.: A sparse matrix arithmetic based on \({\cal{H}}\)-matrices. Part I: introduction to \({\cal{H}}\)-matrices. Computing 64, 89–108 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hackbusch, W.: Hierarchical Matrices. Algorithms and Analysis. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  12. 12.
    Erichsen, S., Sauter, S.: Efficient automatic quadrature in 3-d Galerkin BEM. Comput. Methods Appl. Mech. Eng. 157, 215–224 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall, Boca Raton (2003)zbMATHGoogle Scholar
  14. 14.
    Messner, M., Schanz, M., Tausch, J.: A fast Galerkin method for parabolic space–time boundary integral equations. J. Comput. Phys. 258, 15–30 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Messner, M., Schanz, M., Tausch, J.: An efficient Galerkin boundary element method for the transient heat equation. SIAM J. Sci. Comput. 37–3, A1554–A1576 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Noon, P.J.: The Single Layer Heat Potential and Galerkin Boundary Element Methods for the Heat Equation. Ph.D. thesis, University of Maryland (1988)Google Scholar
  17. 17.
    Reich, N.: Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces. M2AN Math. Model. Numer. Anal. 44(1), 33–73 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stevenson, R., Schwab, C.: Space–time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78, 1293–1318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tausch, J.: A fast method for solving the heat equation by layer potentials. J. Comput. Phys. 224, 956–969 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tausch, J.: Fast Nyström methods for parabolic boundary integral equations. In: Langer, U., Schanz, M., Wendland, W.L. (eds.) Fast Boundary Element Methods in Engineering and Industrial Applications, Volume 63 of Lecture Notes in Computational Mechanics, vol. 63, pp. 185–219. Springer, Berlin (2012)Google Scholar
  21. 21.
    Winter, C.: Wavelet Galerkin schemes for multidimensional anisotropic integrodifferential operators. SIAM J. Sci. Comput. 32(3), 1545–1566 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zeiser, A.: Fast matrix-vector multiplication in the sparse-grid Galerkin method. J. Sci. Comput. 47(3), 328–346 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zenger, C.: Sparse grids. In: Parallel Algorithms for Partial Differential Equations (Kiel, 1990), Volume 31 of Notes Numerical Fluid Mechanics, pp. 241–251. Vieweg, Braunschweig (1991)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departement Mathematik und InformatikUniversität BaselBaselSwitzerland
  2. 2.Department of MathematicsSouthern Methodist UniversityDallasUSA

Personalised recommendations