Skip to main content
Log in

Linearly implicit full discretization of surface evolution

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Stability and convergence of full discretizations of various surface evolution equations are studied in this paper. The proposed discretization combines a higher-order evolving-surface finite element method for space discretization with higher-order linearly implicit backward difference formulae for time discretization. The stability of the full discretization is studied in the matrix–vector formulation of the numerical method. The geometry of the problem enters into the bounds of the consistency errors, but does not enter into the proof of stability. Numerical examples illustrate the convergence behaviour of the full discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akrivis, G., Lubich, C.: Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131(4), 713–735 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G., Li, B., Lubich, C.: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations. Math. Comput. 86(306), 1527–1552 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, J.W., Deckelnick, K., Styles, V.: Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve. SIAM J. Numer. Anal. 55(2), 1080–1100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dahlquist, G.: G-stability is equivalent to A-stability. BIT 18, 384–401 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–807 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988)

  7. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dziuk, G., Elliott, C.M.: Fully discrete evolving surface finite element method. SIAM J. Numer. Anal. 50(5), 2677–2694 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dziuk, G., Elliott, C.M.: \(L^2\)-estimates for the evolving surface finite element method. Math. Comput. 82(281), 1–24 (2013)

    Article  MATH  Google Scholar 

  10. Dziuk, G., Lubich, C., Mansour, D.E.: Runge-Kutta time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 32(2), 394–416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gautschi, W.: Numerical Analysis, 1st edn. Birkauser, Boston (1997)

    MATH  Google Scholar 

  12. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differetial-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  13. Kovács, B.: High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA J. Numer. Anal. 38(1), 430–459 (2018). https://doi.org/10.1093/imanum/drx013

    Article  MathSciNet  Google Scholar 

  14. Kovács, B., Li, B., Lubich, C., Power Guerra, C.A.: Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numer. Math. 137(3), 643–689 (2017). https://doi.org/10.1007/s00211-017-0888-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Kovács, B., Power Guerra, C.A.: Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces. Numer. Methods Partial Differ. Equ. 32(4), 1200–1231 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lubich, C., Mansour, D.E., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33(4), 1365–1385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nevanlinna, O., Odeh, F.: Multiplier techniques for linear multistep methods. Numer. Funct. Anal. Optim. 3(4), 377–423 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Deutsche Forschungsgemeinschaft, SFB 1173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Kovács.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, B., Lubich, C. Linearly implicit full discretization of surface evolution. Numer. Math. 140, 121–152 (2018). https://doi.org/10.1007/s00211-018-0962-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0962-6

Mathematics Subject Classification

Navigation