Numerische Mathematik

, Volume 139, Issue 4, pp 913–938 | Cite as

Energy corrected FEM for optimal Dirichlet boundary control problems

  • Lorenz John
  • Piotr Swierczynski
  • Barbara Wohlmuth


In the presence of re-entrant corners, the solution of PDE-constrained optimization problems, in general, has singular components, even when the given data are smooth. Consequently, the use of standard finite element discretization gives rise to the so-called ’pollution effect’. This means that only a reduced convergence rate, compared to the best approximation error, is obtained. We discuss how optimal convergence rates in weighted norms can be achieved using the idea of energy corrected finite element methods, applied to optimal Dirichlet boundary control problem in the energy space. We present optimal error estimates in weighted norms for the state variable and for the control. Several numerical examples illustrate the obtained theoretical results.

Mathematics Subject Classification

49J20 65N12 65N15 65N30 



The financial support by the German Research Foundation (DFG) trough grant WO 671/11-1 and through the International Research Training Group IGDK 1754 “Optimization and Numerical Analysis for Partial Differential Equations with Nonsmooth Structures” is gratefully acknowledged.


  1. 1.
    Apel, T., Mateos, M., Pfefferer, J., Rösch, A.: On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains. SIAM J. Control Optim. 53(6), 3620–3641 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Apel, T., Nicaise, S., Schöberl, J.: A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges. IMA J. Numer. Anal. 21(4), 843–856 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Apel, T., Pfefferer, J., Rösch, A.: Finite element error estimates on the boundary with application to optimal control. Math. Comput. 84(291), 33–70 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Apel, T., Sändig, A.-M., Whiteman, J.R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19(1), 63–85 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (2001)MATHGoogle Scholar
  6. 6.
    Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999). (electronic)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Blum, H.: The influence of reentrant corners in the numerical approximation of viscous flow problems. In: Numerical treatment of the Navier–Stokes equations (Kiel, 1989), Volume 30 of Notes Numer. Fluid Mechanics, pp. 37–46. Vieweg, Braunschweig (1990)Google Scholar
  8. 8.
    Brenner, S.C.: Multigrid methods for the computation of singular solutions and stress intensity factors. I. Corner singularities. Math. Comput. 68(226), 559–583 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Cai, Z., Kim, S.: A finite element method using singular functions for the Poisson equation: corner singularities. SIAM J. Numer. Anal. 39, 286–299 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31(2), 193–219 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ciarlet, P.G., Lions, J.L.: Handbook of Numerical Analysis, vol. II. Finite Element Methods (Part 1). North Holland, Amsterdam, New York, Oxford (1991)MATHGoogle Scholar
  13. 13.
    Collis, S.S., Ghayour, K., Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Optimal control of unsteady compressible viscous flows. Int. J. Numer. Methods Fluids 40(11), 1401–1429 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    de los Reyes, J.C., Kunisch, K.: A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations. Nonlinear Anal. 62(7), 1289–1316 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Egger, H., Rüde, U., Wohlmuth, B.: Energy-corrected finite element methods for corner singularities. SIAM J. Numer. Anal. 52(1), 171–193 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fix, G.: Higher-order Rayleigh–Ritz approximations. J. Math. Mech. 18, 645–657 (1968/1969)Google Scholar
  17. 17.
    Glowinski, R., Lions, J.L., Trémoliéres, R.: Numerical Analysis of Variational Inequalities. Elsevier, Amsterdam (2011)MATHGoogle Scholar
  18. 18.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)MATHGoogle Scholar
  19. 19.
    Haroske, D.D., Triebel, H.: Distributions, Sobolev Spaces, Elliptic Equations. European Mathematical Society, Warsaw (2008)MATHGoogle Scholar
  20. 20.
    Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth newton method. SIAM J. Optim. 13(3), 865–888 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hintermüller, M., Kovtunenko, V.A., Kunisch, K.: The primal-dual active set method for a crack problem with non-penetration. IMA J. Appl. Math. 69(1), 1–26 (2004)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, volume 23 of Mathematical Modelling: Theory and Applications. Springer, New York (2009)MATHGoogle Scholar
  23. 23.
    Hömberg, D., Meyer, C., Rehberg, J., Ring, W.: Optimal control for the thermistor problem. SIAM J. Control Optim. 48(5), 3449–3481 (2009/2010)Google Scholar
  24. 24.
    Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Berlin (2008)CrossRefMATHGoogle Scholar
  25. 25.
    Huber, M., John, L., Pustejovska, P., Rüde, U., Waluga, C., Wohlmuth, B.: Solution techniques for the Stokes system: a priori and a posteriori modifications, resilient algorithms. In: Proceedings of the 8th International Congress on Industrial and Applied Mathematics, pp. 109–134. Higher Ed. Press, Beijing (2015)Google Scholar
  26. 26.
    John, L.: Optimal Boundary Control in Energy Spaces Preconditioning and Applications. Monographic Series TU Graz, Computation in Engineering and Science, vol. 24 (2014)Google Scholar
  27. 27.
    John, L., Pustejovska, P., Wohlmuth, B., Rüde, U.: Energy-corrected finite element methods for the Stokes system. IMA J. Numer. Anal. (published online) (2016)Google Scholar
  28. 28.
    Kikuchi, N., Oden, J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Studies in Applied and Numerical Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1988)Google Scholar
  29. 29.
    Kondratiev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Mosc. Math. Soc. 16, 227–313 (1967)MathSciNetGoogle Scholar
  30. 30.
    Kufner, A.: Weighted Sobolev spaces. A Wiley-Interscience Publication. Wiley, New York (1985). Translated from the CzechGoogle Scholar
  31. 31.
    Kunisch, K., Vexler, B.: Optimal vortex reduction for instationary flows based on translation invariant cost functionals. SIAM J. Control Optim. 46(4), 1368–1397 (2007)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin, Heidelberg (1971)CrossRefMATHGoogle Scholar
  33. 33.
    Lubuma, J.M.-S., Patidar, K.C.: Towards the implementation of the singular function method for singular perturbation problems. Appl. Math. Comput. 209, 68–74 (2009)MathSciNetMATHGoogle Scholar
  34. 34.
    Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43(3), 970–985 (2004). (electronic)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Of, G., Phan, T.X., Steinbach, O.: An energy space finite element approach for elliptic Dirichlet boundary control problems. Numer. Math. 129(4), 723–748 (2015)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Rüde, U.: Local corrections for eliminating the pollution effect of reentrant corners. Technical Report TUM-INFO-02-89-I01, Institut für Informatik, Technische Universtät München (1989)Google Scholar
  37. 37.
    Rüde, U., Waluga, C., Wohlmuth, B.: Nested Newton strategies for energy-corrected finite element methods. SIAM J. Sci. Comput. 36(4), A1359–A1383 (2014)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Rüde, U., Zenger, C.: On the treatment of singularities in the multigrid method. In: Hackbusch, Wolfgang, Trottenberg, Ulrich (eds.) Multigrid Methods II, Volume 1228 of Lecture Notes in Mathematics, pp. 261–271. Springer, Berlin, Heidelberg (1986)Google Scholar
  39. 39.
    Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Spann, W.: On the boundary element method for the Signorini problem of the Laplacian. Numer. Math. 65, 337–356 (1993)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Steinbach, O.: Boundary element methods for variational inequalities. Numer. Math. 126(1), 173–197 (2014)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory, Volume 34 of Springer Series in Computational Mathematics. Springer, Berlin (2005)CrossRefMATHGoogle Scholar
  43. 43.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. American Mathematical Society, Providence (2010)MATHGoogle Scholar
  44. 44.
    Zenger, C., Gietl, H.: Improved difference schemes for the Dirichlet problem of Poisson’s equation in the neighbourhood of corners. Numer. Math. 30(3), 315–332 (1978)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lorenz John
    • 1
  • Piotr Swierczynski
    • 1
  • Barbara Wohlmuth
    • 1
  1. 1.Institute for Numerical MathematicsTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations