Skip to main content
Log in

Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider a time semi-discretization of a generalized Allen–Cahn equation with time-step parameter \(\tau \). For every \(\tau \), we build an exponential attractor \(\mathcal {M}_\tau \) of the discrete-in-time dynamical system. We prove that \(\mathcal {M}_\tau \) converges to an exponential attractor \(\mathcal {M}_0\) of the continuous-in-time dynamical system for the symmetric Hausdorff distance as \(\tau \) tends to 0. We also provide an explicit estimate of this distance and we prove that the fractal dimension of \(\mathcal {M}_\tau \) is bounded by a constant independent of \(\tau \). Our construction is based on the result of Efendiev, Miranville and Zelik concerning the continuity of exponential attractors under perturbation of the underlying semi-group. Their result has been applied in many situations, but here, for the first time, the perturbation is a discretization. Our method is applicable to a large class of dissipative problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida, M., Yagi, A.: Global stability of approximation for exponential attractors. Funkcial. Ekvac. 47(2), 251–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsing. Acta. Metall. 27, 1084–1095 (1979)

    Article  Google Scholar 

  3. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. Studies in Mathematics and its Applications, vol. 25. North-Holland Publishing Co., Amsterdam (1992)

    MATH  Google Scholar 

  4. Cazenave, T., Haraux, A.: Introduction aux problèmes d’évolution semi-linéaires, Mathématiques & Applications (Paris), vol. 1. Ellipses, Paris (1990)

    MATH  Google Scholar 

  5. Chafee, N., Infante, E.: A bifurcation problem for a nonlinear partial differential equation of parabolic type. SIAM J. Appl. Anal. 4, 17–37 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. American Mathematical Society Colloquium Publications, vol. 49. American Mathematical Society, Providence, RI (2002)

    MATH  Google Scholar 

  7. Coti Zelati, M., Tone, F.: Multivalued attractors and their approximation: applications to the Navier–Stokes equations. Numer. Math. 122(3), 421–441 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations, RAM: Research in Applied Mathematics, vol. 37. Wiley, Paris (1994)

    MATH  Google Scholar 

  9. Efendiev, M., Miranville, A.: The dimension of the global attractor for dissipative reaction-diffusion systems. Appl. Math. Lett. 16(3), 351–355 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a nonlinear reaction-diffusion system in \({{R}}^3\). C. R. Acad. Sci. Paris Sér. I Math. 330(8), 713–718 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a singularly perturbed Cahn–Hilliard system. Math. Nachr. 272, 11–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Efendiev, M., Yagi, A.: Continuous dependence on a parameter of exponential attractors for chemotaxis-growth system. J. Math. Soc. Jpn. 57(1), 167–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ezzoug, E., Goubet, O., Zahrouni, E.: Semi-discrete weakly damped nonlinear 2-D Schrödinger equation. Diff. Integr. Equ. 23(3–4), 237–252 (2010)

    MATH  Google Scholar 

  14. Fabrie, P., Galusinski, C., Miranville, A.: Uniform inertial sets for damped wave equations. Discrete Contin. Dyn. Syst. 6(2), 393–418 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fabrie, P., Galusinski, C., Miranville, A., Zelik, S.: Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete Contin. Dyn. Syst. 10(1–2), 211–238 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Galusinski, C.: Perturbations singulières de problèmes dissipatifs: étude dynamique via l’existence et la continuité d’attracteurs exponentiels. Ph.D. thesis, Université de Bordeaux (1996)

  17. Gatti, S., Grasselli, M., Miranville, A., Pata, V.: A construction of a robust family of exponential attractors. Proc. Am. Math. Soc. 134(1), 117–127 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  19. Hale, J.K.: Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence, RI (1988)

    Google Scholar 

  20. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  Google Scholar 

  21. Ladyzhenskaya, O.: Attractors for Semigroups and Evolution Equations. Lezioni Lincee. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  22. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  23. Marion, M.: Attractors for reaction–diffusion equations: existence and estimate of their dimension. Appl. Anal. 25(1–2), 101–147 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Dafermos, C.M., Pokorný, M. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. IV, pp. 103–200. Elsevier, Amsterdam (2008)

    Google Scholar 

  25. Raugel, G.: Global attractors in partial differential equations. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 885–982. North-Holland, Amsterdam (2002)

    Google Scholar 

  26. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations, Applied Mathematical Sciences, vol. 143. Springer, New York (2002)

    Book  MATH  Google Scholar 

  27. Shen, J.: Convergence of approximate attractors for a fully discrete system for reaction–diffusion equations. Numer. Funct. Anal. Optim. 10(11–12), 1213–1234 (1989). (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, J.: Long time stability and convergence for fully discrete nonlinear Galerkin methods. Appl. Anal. 38(4), 201–229 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis, Cambridge Monographs on Applied and Computational Mathematics, vol. 2. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  30. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  31. Wang, X.: Approximation of stationary statistical properties of dissipative dynamical systems: time discretization. Math. Comput. 79(269), 259–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, X.: Numerical algorithms for stationary statistical properties of dissipative dynamical systems. Discrete Contin. Dyn. Syst. 36(8), 4599–4618 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is thankful to Alain Miranville for helpful discussions. The author also thanks the two anonymous referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Pierre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre, M. Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation. Numer. Math. 139, 121–153 (2018). https://doi.org/10.1007/s00211-017-0937-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0937-z

Keywords

Mathematics Subject Classification

Navigation