Skip to main content
Log in

Analysis of the implicit upwind finite volume scheme with rough coefficients

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the implicit upwind finite volume scheme for numerically approximating the linear continuity equation in the low regularity DiPerna–Lions setting. That is, we are concerned with advecting velocity fields that are spatially Sobolev regular and data that are merely integrable. We prove that on unstructured regular meshes the rate of convergence of approximate solutions generated by the upwind scheme towards the unique distributional solution of the continuous model is at \(\hbox {least}~{1}/{2}\). The numerical error is estimated in terms of logarithmic Kantorovich–Rubinstein distances and provides thus a bound on the rate of weak convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, Johnson and Pitkäranta consider the more general discrete Galerkin approximation.

References

  1. Aguillon, N., Boyer, F.: Error estimate for the upwind scheme for the linear transport equation with boundary data. Ima J. Numer. Anal. (2017). https://doi.org/10.1093/imanum/drw078

  2. Ambrosio, L.: Transport equation and Cauchy problem for \(BV\) vector fields. Invent. Math. 158(2), 227–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Colombo, M., Figalli, A.: Existence and uniqueness of maximal regular flows for non-smooth vector fields. Arch. Ration. Mech. Anal. 218(2), 1043–1081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyer, F.: Analysis of the upwind finite volume method for general initial- and boundary-value transport problems. IMA J. Numer. Anal. 32(4), 1404–1439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenier, Y., Otto, F., Seis, C.: Upper bounds on coarsening rates in demixing binary viscous liquids. SIAM J. Math. Anal. 43(1), 114–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna–Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Delarue, F., Lagoutière, F.: Probabilistic analysis of the upwind scheme for transport equations. Arch. Ration. Mech. Anal. 199(1), 229–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delarue, F., Lagoutière, F., Vauchelet, N.: Convergence order of upwind type schemes for transport equations with discontinuous coefficients. J. Math. Pures Appl. (2017). https://doi.org/10.1016/j.matpur.2017.05.012

  9. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  11. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)

  12. Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46(173), 1–26 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuznetsov, N.N.: The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz., 16(6):1489–1502, 1627 (1976)

  14. Merlet, B.: \(L^\infty \)- and \(L^2\)-error estimates for a finite volume approximation of linear advection. SIAM J. Numer. Anal. 46(1):124–150 (2007/2008)

  15. Merlet, B., Vovelle, J.: Error estimate for finite volume scheme. Numer. Math. 106(1), 129–155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Otto, F., Seis, C., Slepčev, D.: Crossover of the coarsening rates in demixing of binary viscous liquids. Commun. Math. Sci. 11(2), 441–464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peterson, T.E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28(1), 133–140 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schlichting, A., Seis, C.: Convergence rates for upwind schemes with rough coefficients. SIAM J. Numer. Anal. 55(2), 812–840 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seis, C.: A quantitative theory for the continuity equation. Ann. Inst. H. Poincaré Anal. Non Linéaire (2017). https://doi.org/10.1016/j.anihpc.2017.01.001

  20. Seis, C.: Optimal stability estimates for continuity equations. Proc. R. Soc. Edinburgh Sect. A (2017) (to appear)

  21. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  22. Tang, T., Teng, Z.H.: The sharpness of Kuznetsov’s \(O(\sqrt{\Delta x}) L^1\)-error estimate for monotone difference schemes. Math. Comput. 64(210), 581–589 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Vila, J.-P., Villedieu, P.: Convergence of an explicit finite volume scheme for first order symmetric systems. Numer. Math. 94(3), 573–602 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  25. Walkington, N.J.: Convergence of the discontinuous Galerkin method for discontinuous solutions. SIAM J. Numer. Anal. 42(5), 1801–1817 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The present work was done when the second author was affiliated with the Universität Bonn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Seis.

Appendix A: The q-mean

Appendix A: The q-mean

We briefly describe some helpful estimates for the q-mean defined for \(q>1\) by

$$\begin{aligned} \theta _q: \mathbf {R}_+ \times \mathbf {R}_+ \rightarrow \mathbf {R}_+ \qquad \text {with}\qquad \theta _q(a,b) := \frac{q-1}{q} \frac{a^q - b^q}{a^{q-1} -b^{q-1}}. \end{aligned}$$
  1. (i)

    The function \(\theta _q\) has the following integral representation

  2. (ii)

    The function \(\theta _q\) is 1-homogeneous: for any \(c>0\) it holds \(\theta _q(c\,a, c\,b) = c\,\theta _q(a,b)\).

  3. (iii)

    For any positive numbers \(a\ne b\) is \(q\mapsto \theta _q(a,b)\) strictly increasing.

  4. (iv)

    The function \((a,b)\mapsto \theta _q(a,b)\) is concave for \(q\in (1,2)\) and convex for \(q\in (2,\infty )\).

  5. (v)

    For any \(a,b>0\) it holds

Proof

For the identity (i) let denote the integrand on the right hand side. Then, by a straightforward calculation it follows \(\partial _s t_q(a,b;s) = \frac{b^{q-1}-a^{q-1}}{q-1} t(s)^{2-q}\) and hence \(T_q(a,b;s) := \frac{q-1}{q} \frac{t(s)^q}{b^{q-1}-a^{q-1}}\) is its primitive from which (i) follows.

The 1-homogeneity as stated in (ii) follows immediately from the definition.

For proving (iii), we note that \(t_q(a,b;s)\) is the \(\ell ^{q-1}\) norm on the probability space for a function taking values \(f(0)=a\) and \(f(1)=b\). Hence, the statement is a consequence of the ordering of the \(\ell ^p\) spaces, which extends to any value \(p\in \mathbf {R}\).

The property (iv) follows by calculating the Hessian of \((a,b)\mapsto t_s(a,b)\):

Now, one immediately recovers that \((a,b)\mapsto t_q(a,b;s)\) is negative semidefinite for \(q\in [0,2)\) and positive semidefinite for \(q>2\).

For (v), we can assume by symmetry and 1-homogeneity that \(a\in (0,1)\) and \(b=1\). From (iv), we have that the mapping \((0,1) \ni a\mapsto \theta _q(a,1)\) is concave for \(q\in (1,2)\) and convex for \(q>2\). Let us first assume \(q\in (1,2)\), then by convexity of \(a\mapsto \theta _2(a,1)-\theta _q(a,1)\), we estimate using the secant inequality between the points 0 and 1 : 

For \(q>2\), we apply the same argument to the convex function \(a\mapsto \theta _q(a,1)-\theta _2(a,1)\).

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlichting, A., Seis, C. Analysis of the implicit upwind finite volume scheme with rough coefficients. Numer. Math. 139, 155–186 (2018). https://doi.org/10.1007/s00211-017-0935-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0935-1

Mathematics Subject Classification

Navigation