Skip to main content
Log in

Identifying conductivity in electrical impedance tomography with total variation regularization

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we investigate the problem of identifying the conductivity in electrical impedance tomography from one boundary measurement. A variational method with total variation regularization is here proposed to tackle this problem. We discretize the PDE as well as the conductivity with piecewise linear, continuous finite elements. We prove the stability and convergence of this technique. For the numerical solution we propose a projected Armijo algorithm. Finally, a numerical experiment is presented to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Alessandrini, G., Isakov, V., Powell, J.: Local uniqueness in the inverse conductivity problem with one measurement. Trans. Am. Math. Soc. 347, 3031–3041 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Space. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  5. Bartels, S., Nochetto, R.H., Salgado, A.J.: Discrete TV flows without regularization. SIAM J. Numer. Anal. 52, 363–385 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C.: Optimal finite element interpolation on curved domain. SIAM J. Numer. Anal. 26, 1212–1240 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernardi, C., Girault, V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35, 1893–1916 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blank, L., Rupprecht, C.: An extension of the projected gradient method to a Banach space setting with application in structural topology optimization. Technical Report, ArXiv e-prints 2015 arXiv:1503.03783v2

  9. Bochev, P., Lehoucq, R.B.: On the finite element solution of the pure Neumann problem. SIAM Rev. 47, 50–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borcea, L.: Electrical impedance tomography. Inverse Problems 18, 99–136 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  12. Brown, R.M., Torres, R.H.: Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in \(L^p\), \(p > 2n\). J. Fourier Anal. Appl. 9, 563–574 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brown, R.M., Uhlmann, G.A.: Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions. Commun. Partial Differ. Equ. 22, 1009–1027 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burger, M., Osher, S.: A guide to the TV zoo. In: Burger, M., Osher, S. (eds.) Level-Set and PDE-Based Reconstruction Methods. Springer, Berlin (2013)

    Chapter  Google Scholar 

  15. Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and Its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73. Soc. Brasil. Mat., Rio de Janeiro (1980)

  16. Chen, Z., Zou, J.: An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems. SIAM J. Control Optim. 37, 892–910 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ciarlet, P.G.: Basis error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of numerical analisis, vol. II. Elsevier, North-Holland, Amsterdam (1991)

    Google Scholar 

  19. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  20. Dijkstra, A., Brown, B., Harris, N., Barber, D., Endbrooke, D.: Review: clinical applications of electrical impedance tomography. J. Med. Eng. Technol. 17, 89–98 (1993)

    Article  Google Scholar 

  21. Dobson, D.C.: Recovery of blocky images in electrical impedance tomography. In: Engl, H.W., Louis, A.K., Rundell, W. (eds.) Inverse Problems in Medical Imaging and Nondestructive Testing, pp. 43–64. Springer, Berlin (1997)

    Chapter  Google Scholar 

  22. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dortdrecht (1996)

    Book  MATH  Google Scholar 

  23. Fix, G.J., Gunzburger, M.D., Peterson, J.S.: On finite element approximations of problems having inhomogeneous essential boundary conditions. Comput. Math. Appl. 9, 687–700 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)

    Book  MATH  Google Scholar 

  25. Gockenbach, M.S.: Understanding and Implementing the Finite Element Method. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  26. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  27. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  28. Knowles, I.: A variational algorithm for electrical impedance tomography. Inverse Problems 14, 1513–1525 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kohn, R.V., McKenney, A.: Numerical implementation of a variational method for electrical impedance tomography. Inverse Problems 6, 389–414 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kohn, R.V., Vogelius, M.: Determining conductivity by boundary measurements. Commun. Pure Appl. Math. 37, 289–298 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kohn, R.V., Vogelius, M.: Determining conductivity by boundary measurements. II. Interior results. Commun. Pure Appl. Math. 38, 643–667 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kohn, R.V., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Commun. Pure Appl. Math. 40, 745–777 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mueller, J.L., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications. SIAM, Philadelphia (2012)

    Book  MATH  Google Scholar 

  34. Nachman, A.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143, 71–96 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Neubauer, A., Scherzer, O.: Finite-dimensional approximation of Tikhonov regularized solutions of nonlinear ill-posed problems. Numer. Funct. Anal. Optim. 11, 85–99 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Niinimäki, K., Lassas, M., Hämäläinen, K., Kallonen, A., Kolehmainen, V., Niemi, E., Siltanen, S.: Multi-resolution parameter choice method for total variation regularized tomography. SIAM J. Imaging Sci. 9, 938–974 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Päivärinta, L., Panchenko, A., Uhlmann, G.: Complex geometric optics solutions for Lipschitz conductivities. Rev. Mat. Iberoam. 19, 57–72 (2003)

    Article  MATH  Google Scholar 

  38. Pechstein, C.: Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  39. Scott, R., Zhang, S.Y.: Finite element interpolation of nonsmooth function satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52, 1023–1040 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Troianiello, G.M.: Elliptic Differential Equations and Obstacle Problems. Plenum, New York (1987)

    Book  MATH  Google Scholar 

  43. Uhlmann, G.: Electrical impedance tomography and Calderón’s problem. Inverse Problems 25, 123011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors M. Hinze, B. Kaltenbacher and T.N.T. Quyen would like to thank the referees and the editor for their valuable comments and suggestions which helped to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Nhan Tam Quyen.

Additional information

M. Hinze gratefully acknowledges support of the Lothar Collatz Center for Computing in Science at the University of Hamburg.

B. Kaltenbacher gratefully acknowledges support of the Austrian Wissenschaftsfonds through grant FWF I2271 entitled “Solving inverse problems without forward operators”.

T.N.T. Quyen gratefully acknowledges support of the Alexander von Humboldt-Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinze, M., Kaltenbacher, B. & Quyen, T.N.T. Identifying conductivity in electrical impedance tomography with total variation regularization. Numer. Math. 138, 723–765 (2018). https://doi.org/10.1007/s00211-017-0920-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0920-8

Keywords

Mathematics Subject Classification

Navigation