Skip to main content
Log in

Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Epigallocatechin-3-gallate (EGCG), a catechin polyphenols component, is the main ingredient of green tea extract. It has been reported that EGCG is a potent antioxidant and beneficial in oxidative stress-related diseases, but others and our previous study showed that EGCG has pro-oxidant effects at high concentration. Thus, in this study, we tried to examine the possible pathway of EGCG-induced cell death in cultures of rat hippocampal neurons. Our results showed that EGCG caused a rapid elevation of intracellular free calcium levels ([Ca2+]i) in a dose-dependent way. Exposure to EGCG dose- and time-dependently increased the production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential (Δψ m) as well as the Bcl-2/Bax expression ratio. Importantly, acetoxymethyl ester of 5,5′-dimethyl-bis(o-aminophenoxy)ethane-N,N,N,N′-tetraacetic acid, ethylene glycol-bis-(2-aminoethyl)-N,N,N,N′-tetraacetic acid, and vitamin E could attenuate EGCG-induced apoptotic responses, including ROS generation, mitochondrial dysfunction, and finally partially prevented EGCG-induced cell death. Furthermore, treatment of hippocampal neurons with EGCG resulted in an elevation of caspase-3 and caspase-9 activities with no significant accompaniment of lactate dehydrogenase release, which provided further evidence that apoptosis was the dominant mode of EGCG-induced cell death in cultures of hippocampal neurons. Taken together, these findings indicated that EGCG induced hippocampal neuron death through the mitochondrion-dependent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ac-DEVD-pNA:

Acetyl-Asp-Glu-Val-Asp p-nitroanilide

Ac-LEHD-pNA:

Acetyl-Leu-Glu-His-Asp p-nitroanilide

BAPTA-AM:

Acetoxymethyl ester of 5,5′-dimethyl-bis(o-aminophenoxy)ethane-N,N,N,N′-tetraacetic acid

CNS:

Central nervous system

DCF:

Dichlorofluorescein

DCFH-DA:

2′,7′-Dichlorofluorescein diacetate

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

EGCG:

Epigallocatechin-3-gallate

EGTA:

Ethylene glycol-bis-(2-aminoethyl)-N,N,N,N′-tetraacetic acid

ER:

Endoplasmic reticulum

Fluo-3-AM:

Fluo-3-acetoxymethyl ester

HEPES:

4-(2-hydroxyethyl)-1-201 piperazineethanesulfonic acid

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide

LDH:

Lactate dehydrogenase

mPT:

Mitochondria permeability transition

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

pNA:

p-nitroanilide

ROS:

Reactive oxygen species

Δψ m :

Mitochondrial membrane potential

References

  • Akhtar RS, Ness JM, Roth KA (2004) Bcl-2 family regulation of neuronal development and neurodegeneration. Biochim Biophys Acta 1644:189–203

    Article  PubMed  CAS  Google Scholar 

  • Babich H, Zuckerbraun HL, Wurzburger BJ, Rubin YL, Borenfreund E, Blau L (1996) Benzoyl peroxide cytotoxicity evaluated in vitro with the human keratinocyte cell line, RHEK-1. Toxicology 106:187–196

    Article  PubMed  CAS  Google Scholar 

  • Bandele OJ, Osheroff N (2008) (−)-Epigallocatechin gallate, a major constituent of green tea, poisons human type II topoisomerases. Chem Res Toxicol 21:936–943

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Cafe C, Torri C, Bertorelli L, Tartara F, Tancioni F, Gaetani P, Rodriguez y, Baena R, Marzatico F (1995) Oxidative events in neuronal and glial cell-enriched fractions of rat cerebral cortex. Free Radic Biol Med 19:853–857

    Article  PubMed  CAS  Google Scholar 

  • Carriedo SG, Sensi SL, Yin HZ, Weiss JH (2000) AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J Neurosci 20:240–250

    PubMed  CAS  Google Scholar 

  • Chacon E, Acosta D (1991) Mitochondrial regulation of superoxide by Ca2+: an alternate mechanism for the cardiotoxicity of doxorubicin. Toxicol Appl Pharmacol 107:117–128

    Article  PubMed  CAS  Google Scholar 

  • Choi D, Kim D, Park Y, Chun B, Choi S (2002) Protective effects of rilmenidine and AGN 192403 on oxidative cytotoxicity and mitochondrial inhibitor-induced cytotoxicity in astrocytes. Free Radic Biol Med 33:1321–1333

    Article  PubMed  CAS  Google Scholar 

  • Chow H-HS, Cai Y, Alberts DS, Hakim I, Dorr R, Shahi F, Crowell JA, Yang CS, Hara Y (2001) Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol Biomarkers Prev 10:53–58

    PubMed  CAS  Google Scholar 

  • Chung F-L, Schwartz J, Herzog CR, Yang Y-M (2003) Tea and cancer prevention: studies in animals and humans. J Nutr 133:3268S–3274S

    PubMed  CAS  Google Scholar 

  • Doutheil J, Althausen S, Gissel C, Paschen W (1999) Activation of MYD116(gadd34) expression following transient forebrain ischemia of rat: implications for a role of disturbances of endoplasmic reticulum calcium homeostasis. Brain Res Mol Brain Res 63:225–232

    Article  PubMed  CAS  Google Scholar 

  • Dugan L, Sensi S, Canzoniero L, Handran S, Rothman S, Lin T, Goldberg M, Choi D (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J Neurosci 15:6377–6388

    PubMed  CAS  Google Scholar 

  • Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    Article  PubMed  CAS  Google Scholar 

  • Fleury C, Mignotte B, Vayssière J-L (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Sopher BL, Furukawa K, Pham DG, Robinson N, Martin GM, Mattson MP (1997) Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid-peptide: involvement of calcium and oxyradicals. J Neurosci 17:4212–4222

    PubMed  CAS  Google Scholar 

  • Hwang J-T, Ha J, Park I-J, Lee S-K, Baik HW, Kim YM, Park OJ (2007) Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett 247:115–121

    Article  PubMed  CAS  Google Scholar 

  • Isbrucker RA, Bausch J, Edwards JA, Wolz E (2006) Safety studies on epigallocatechin gallate (EGCG) preparations. Part 1: Genotoxicity. Food Chem Toxicol 44:626–635

    Article  PubMed  CAS  Google Scholar 

  • Kanadzu M, Lu Y, Morimoto K (2006) Dual function of (−)-epigallocatechin gallate (EGCG) in healthy human lymphocytes. Cancer Lett 241:250–255

    Article  PubMed  CAS  Google Scholar 

  • Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262s–3267s

    PubMed  CAS  Google Scholar 

  • Lambert JD, Sang S, Yang CS (2007) Possible controversy over dietary polyphenols: benefits vs risks. Chem Res Toxicol 20:583–585

    Article  PubMed  CAS  Google Scholar 

  • Lin HH, Li W-W, Lee Y-C, Chu S-T (2007) Apoptosis induced by uterine 24p3 protein in endometrial carcinoma cell line. Toxicology 234:203–215

    Article  PubMed  CAS  Google Scholar 

  • Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJL (1994) Cooper, vitamin E, ascorbate, glutathione, glutathione disulfide and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative process in the brain. J Neurochem 62:45–53

    Article  PubMed  CAS  Google Scholar 

  • Marttila RJ, Roytta M, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in the human brain. J Neural Transm 74:87–95

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Lovell MA, Furukawa K, Markesbery WR (1995) Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of [Ca2+]i and neurotoxicity, and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem 65:1740–1751

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Yokozawa T (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40:1745–1750

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P, Zhivotovsky B, Orrenius S (1994) Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium 16:279–288

    Article  PubMed  CAS  Google Scholar 

  • Norenberg MD, Rao KVR (2007) The mitochondrial permeability transition in neurologic disease. Neurochem Int 50:983–997

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Shin D-H, Chung WJ, Leem K, Yoon SH, Hong MS, Chung J-H, Bae J-H, Hwang JS (2006) Epigallocatechin gallate reduces hypoxia-induced apoptosis in human hepatoma cells. Life Sci 78:2826–2832

    Article  PubMed  CAS  Google Scholar 

  • Raza H, John A (2005) Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments. Toxicol Appl Pharmacol 207:212–220

    PubMed  CAS  Google Scholar 

  • Reyes-Martin P, Alique M, Parra T, JPd Hornedo, Lucio-Cazana J (2007) Cyclooxygenase-independent inhibition of H2O2-induced cell death by S-ketoprofen in renal cells. Pharmacol Res 55:295–302

    Article  PubMed  CAS  Google Scholar 

  • Saffari Y, Sadrzadeh SMH (2004) Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sci 74:1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Sai K, Kai S, Umemura T, Tanimura A, Hasegawa R, Inoue T, Kurokawa Y (1998) Protective effects of green tea on hepatotoxicity, oxidative DNA damage and cell proliferation in the rat liver induced by repeated oral administration of 2-nitropropane. Food Chem Toxicol 36:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Sakagami H, Arakawa H, Maeda M, Satoh K, Kadofuku T, Fukuchi K, Gomi K (2001) Production of hydrogen peroxide and methionine sulfoxide by epigallocatechin gallate and antioxidants. Anticancer Res 21:2633–2641

    PubMed  CAS  Google Scholar 

  • Schmidt M, Schmitz HJ, Baumgart A, Guedon D, Netsch MI, Kreuter MH, Schmidlin CB, Schrenk D (2005) Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture. Food Chem Toxicol 43:307–314

    Article  PubMed  CAS  Google Scholar 

  • Sugisawa A, Umegaki K (2002) Physiological concentrations of (−)-epigallocatechin-3-O-gallate (EGCg) prevent chromosomal damage induced by reactive oxygen species in WIL2-NS cells. J Nutr 132:1836–1839

    PubMed  CAS  Google Scholar 

  • Sunanda, Rao BS, Raju TR (1998) Corticosterone attenuates zinc-induced neurotoxicity in primary hippocampal cultures. Brain Res 791:295–298

    Article  PubMed  CAS  Google Scholar 

  • Yang CS, Chen L, Lee M-J, Balentine D, Kuo MC, Schantz SP (1998) Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 7:351–354

    PubMed  CAS  Google Scholar 

  • Yao K, Ye P, Zhang L, Tan J, Tang X, Zhang Y (2008) Epigallocatechin gallate protects against oxidative stress-induced mitochondria-dependent apoptosis in human lens epithelial cells. Mol Vis 14:217–223

    PubMed  CAS  Google Scholar 

  • Yin ST, Tang ML, Su L, Chen L, Hu P, Wang HL, Wang M, Ruan DY (2008) Effects of epigallocatechin-3-gallate on lead-induced oxidative damage. Toxicology 249:45–54

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama Y, Nohara K, Okubo T, Kano I, Akagawa K, Kano K (2007) Generation of reactive oxygen species is an early event in dolichyl phosphate-induced apoptosis. J Cell Biochem 100:349–361

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Brunk UT (1993) Alloxan cytotoxicity is highly potentiated by plasma membrane- and lysosomal-associated iron—a study on a model system of cultured J-774 cells. Diabetologia 36:707–715

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Nos. 30630057, 30670554, and 30670662) and Anhui High Education Natural Science Program (No. ZD2008010-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di-Yun Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, ST., Tang, ML., Deng, HM. et al. Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress. Naunyn-Schmied Arch Pharmacol 379, 551–564 (2009). https://doi.org/10.1007/s00210-009-0401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0401-4

Keywords

Navigation