Skip to main content
Log in

The Na+/H+ exchanger modulates long-term potentiation in rat hippocampal slices

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Although present in great variety in the brain, the role of Na+/H+ exchangers (NHEs) in hippocampal plasticity is still unknown and the effect of NHE inhibition on long-term potentiation (LTP) has not been studied yet. As it is conceivable that NHE inhibitors may severely affect mechanisms that are considered to underlie learning and memory we investigated whether the broad-spectrum NHE inhibitor 5′-(N-ethyl-N-isopropyl)-amiloride (EIPA, 10 μM) influences LTP induced by different stimuli based on a theta burst in interface hippocampus slices from 7–8-week-old Wistar and 30-month-old Fischer 344/Brown–Norway F1 hybrid (F344/BN) rats. EIPA did not affect basal synaptic transmission, paired pulse inhibition, or LTP induced by a weak stimulus, but improved the maintenance of the LTP of the population spike induced by a strong tetanus. Our data suggest that NHE activity serves as a negative feedback mechanism to control neuronal excitability and plasticity in both young and senescent animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen P, Sundberg SH, Sveen O, Swann JW, Wigstrom H (1980) Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J Physiol 302:463–82, 463–482

    PubMed  CAS  Google Scholar 

  • Attaphitaya S, Park K, Melvin JE (1999) Molecular cloning and functional expression of a rat Na+/H+ exchanger (NHE5) highly expressed in brain. J Biol Chem 274:4383–4388

    Article  PubMed  CAS  Google Scholar 

  • Balestrino M, Somjen GG (1988) Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat. J Physiol 396:247–66, 247–266

    PubMed  CAS  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Bonnet U, Bingmann D, Wiemann M (2000) Intracellular pH modulates spontaneous and epileptiform bioelectric activity of hippocampal CA3-neurones. Eur Neuropsychopharmacol 10:97–103

    Article  PubMed  CAS  Google Scholar 

  • Bookstein C, Musch MW, DePaoli A, Xie Y, Rabenau K, Villereal M, Rao MC, Chang EB (1996) Characterization of the rat Na+/H+ exchanger isoform NHE4 and localization in rat hippocampus. Am J Physiol 271:C1629–C1638

    PubMed  CAS  Google Scholar 

  • Chambrey R, Achard JM, Warnock DG (1997) Heterologous expression of rat NHE4: a highly amiloride-resistant Na+/H+ exchanger isoform. Am J Physiol 272:C90–C98

    PubMed  CAS  Google Scholar 

  • Chambrey R, St John PL, Eladari D, Quentin F, Warnock DG, Abrahamson DR, Podevin RA, Paillard M (2001) Localization and functional characterization of Na+/H+ exchanger isoform NHE4 in rat thick ascending limbs. Am J Physiol Renal Physiol 281:F707–F717

    PubMed  CAS  Google Scholar 

  • Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    PubMed  CAS  Google Scholar 

  • Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10:456–465

    Article  PubMed  Google Scholar 

  • Hsu KS, Liang YC, Huang CC (2000) Influence of an extracellular acidosis on excitatory synaptic transmission and long-term potentiation in the CA1 region of rat hippocampal slices. J Neurosci Res 62:403–415

    Article  PubMed  CAS  Google Scholar 

  • Krishtal OA, Osipchuk YV, Shelest TN, Smirnoff SV (1987) Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res 436:352–356

    Article  PubMed  CAS  Google Scholar 

  • Lipman D, Chrisp CE, Hazzard DG, Bronson RT (1996) Pathologic characterization of brown Norway, Brown Norway × Fischer 344, and Fischer 344 × Brown Norway rats with relation to age. J Gerontol A Biol Sci Med Sci 51:B54–B59

    PubMed  CAS  Google Scholar 

  • Ma E, Haddad GG (1997) Expression and localization of Na+/H+ exchangers in rat central nervous system. Neuroscience 79:591–603

    Article  PubMed  CAS  Google Scholar 

  • Orlowski J, Grinstein S (1997) Na+/H+ exchangers of mammalian cells. J Biol Chem 272:22373–22376

    Article  PubMed  CAS  Google Scholar 

  • Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447:549–565

    Article  PubMed  CAS  Google Scholar 

  • Raley-Susman KM, Cragoe EJ Jr, Sapolsky RM, Kopito RR (1991) Regulation of intracellular pH in cultured hippocampal neurons by an amiloride-insensitive Na+/H+ exchanger. J Biol Chem 266:2739–2745

    PubMed  CAS  Google Scholar 

  • Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40

    Article  PubMed  CAS  Google Scholar 

  • Saybasili H, Stevens DR, Haas HL (1995) pH-dependent modulation of N-methyl-d-aspartate receptor-mediated synaptic currents by histamine in rat hippocampus in vitro. Neurosci Lett 199:225–227

    Article  PubMed  CAS  Google Scholar 

  • Schwiening CJ, Boron WF (1994) Regulation of intracellular pH in pyramidal neurones from the rat hippocampus by Na(+)-dependent Cl(−)–HCO3− exchange. J Physiol 475:59–67

    PubMed  CAS  Google Scholar 

  • Sprott RL (1991) Development of animal models of aging at the National Institute of Aging. Neurobiol Aging 12:635–638

    Article  PubMed  CAS  Google Scholar 

  • Stelzer A, Simon G, Kovacs G, Rai R (1994) Synaptic disinhibition during maintenance of long-term potentiation in the CA1 hippocampal subfield. Proc Natl Acad Sci USA 91:3058–3062

    Article  PubMed  CAS  Google Scholar 

  • Szabo EZ, Numata M, Shull GE, Orlowski J (2000) Kinetic and pharmacological properties of human brain Na(+)/H(+) exchanger isoform 5 stably expressed in Chinese hamster ovary cells. J Biol Chem 275:6302–6307

    Article  PubMed  CAS  Google Scholar 

  • Taira T, Smirnov S, Voipio J, Kaila K (1993) Intrinsic proton modulation of excitatory transmission in rat hippocampal slices. Neuroreport 4:93–96

    Article  PubMed  CAS  Google Scholar 

  • Tombaugh GC, Somjen GG (1996) Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons. J Physiol 493:719–732

    PubMed  CAS  Google Scholar 

  • Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature 345:347–350

    Article  PubMed  CAS  Google Scholar 

  • Velisek L (1998) Extracellular acidosis and high levels of carbon dioxide suppress synaptic transmission and prevent the induction of long-term potentiation in the CA1 region of rat hippocampal slices. Hippocampus 8:24–32

    Article  PubMed  CAS  Google Scholar 

  • Walz W (1989) pH shifts evoked by neuronal stimulation in slices of rat hippocampus. Can J Physiol Pharmacol 67:577–581

    PubMed  CAS  Google Scholar 

  • Wang W, Gong N, Xu TL (2006) Downregulation of KCC2 following LTP contributes to EPSP-spike potentiation in rat hippocampus. Biochem Biophys Res Commun 19(343):1209–1215

    Article  Google Scholar 

  • Wigstrom H, Gustafsson B (1983) Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition. Nature 301:603–604

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Kang N, Jiang L, Nedergaard M, Kang J (2005) Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. J Neurosci 25:1750–1760

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raik Rönicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rönicke, R., Schröder, U.H., Böhm, K. et al. The Na+/H+ exchanger modulates long-term potentiation in rat hippocampal slices. Naunyn-Schmied Arch Pharmacol 379, 233–239 (2009). https://doi.org/10.1007/s00210-008-0364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0364-x

Keywords

Navigation