Skip to main content

Advertisement

Log in

Pharmacological analysis of the interaction of antimuscarinic drugs at M2 and M3 muscarinic receptors in vivo using the pithed rat assay

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Muscarinic receptor antagonists form the mainstay of the therapeutic options for airway, bladder, and gastrointestinal smooth muscle disorders. Both M2 and M3 muscarinic receptors are involved in mediating smooth muscle contractility, although the relative functional contribution of each subtype, especially in the disease state, is unclear. Because the potency and selectivity of compounds for a given receptor in an in vivo setting can be dissimilar to that observed in an in vitro system, we developed an in vivo assay to simultaneously determine the absolute potency and selectivity of muscarinic receptor antagonists at M2 and M3 receptors using the pithed rat. Methacholine (MCh)-induced bradycardia and depressor responses were used as surrogate functional endpoints for M2 and M3 receptor activation, respectively. The influence of the muscarinic antagonists, tolterodine, oxybutynin, darifenacin, Ro 320-6206, solifenacin, or tiotropium on the MCh-induced responses were studied. The estimated DR10 values (dose producing a tenfold shift in the MCh curve) of tolterodine, oxybutynin, darifenacin, Ro 320-6206, solifenacin, and tiotropium for the M2 muscarinic receptor-mediated bradycardia were 0.22, 1.18, ∼2.6, 0.025, 0.40, and 0.0026 mg/kg, respectively, and 0.14, 0.18, 0.11, 3.0, 0.18, and 0.0017 mg/kg, respectively, for the M3 muscarinic receptor-mediated depressor response. In a separate set of experiments, a single intravenous dose of tiotropium was administered before a MCh curve at 1, 3, 6, or 9 h to determine if tiotropium exhibited time-dependent selectivity for the M3 receptor as has been reported from in vitro studies. The results indicate a slight preference of tiotropium for the M3 receptor at later time points. The pithed rat assay may serve useful for elucidating the functional contribution of M2 and M3 receptors to the in vivo pharmacological effects of antagonists in disease animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrams P (2001) Evidence for the efficacy and safety of tolterodine in the treatment of overactive bladder. Expert Opin Pharmacother 2:1685–1701

    Article  PubMed  CAS  Google Scholar 

  • Alabaster VA (1997) Discovery & development of selective M3 antagonists for clinical use. Life Sci 60:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Alabaster VA (2002) The fall and rise of in vivo pharmacology. Trends Pharmacol Sci 23:13–18

    Article  Google Scholar 

  • Andersson KE, Chapple CR (2001) Oxybutynin and the overactive bladder. World J Urol 19:319–323

    Article  PubMed  CAS  Google Scholar 

  • Angeli P, Cantalamessa F, Gulini U, Melchiorre C (1995) Selective blockade of muscarinic M2 receptors in vivo by the new antagonist tripitramine. Naunyn Schmiedeberg’s Arch Pharmacol 352:304–307

    CAS  Google Scholar 

  • Barnes PJ (2000) The pharmacological properties of tiotropium. Chest 117:63S–66S

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ, Belvisi MG, Mak JC, Haddad EB, O’Connor B (1995) Tiotropium bromide (Ba 679 BR), a novel long-acting muscarinic antagonist for the treatment of obstructive airways disease. Life Sci 56:853–859

    Article  PubMed  CAS  Google Scholar 

  • Callahan MJ (2002) Irritable bowel syndrome neuropharmacology. A review of approved and investigational compounds. J Clin Gastroenterol 35:S58–S67

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP, Birdsall NJM (1998) International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  CAS  Google Scholar 

  • Chapple CR (2000) Muscarinic receptor antagonists in the treatment of overactive bladder. Urology 55:33–46

    Article  PubMed  CAS  Google Scholar 

  • Disse B (2001) Antimuscarinic treatment for lung diseases from research to clinical practice. Life Sci 68:2557–2564

    Article  PubMed  CAS  Google Scholar 

  • Disse B, Reichl R, Speck G, Traunecker W, Ludwig Rominger KL, Hammer R (1993) Ba 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci 52:537–544

    Article  PubMed  CAS  Google Scholar 

  • Doods HN, Mathy MJ, Davidesko D, van Charldorp KJ, de JA, van Zwieten PA (1987) Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J Pharmacol Exp Ther 242:257–262

    PubMed  CAS  Google Scholar 

  • Eglen RM, Hegde SS, Watson N (1996) Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 48:531–565

    PubMed  CAS  Google Scholar 

  • Eglen RM, Choppin A, Dillon MP, Hegde S (1999) Muscarinic receptor ligands and their therapeutic potential. Curr Opin Chem Biol 3:426–432

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ (2003a) Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci 74:355–366

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ (2003b) Pharmacological analysis of the contractile role of M2 and M3 muscarinic receptors in smooth muscle. Receptors Channels 9:261–277

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ, Ostrom RS, Sawyer GW (1997) Subtypes of the muscarinic receptor in smooth muscle. Life Sci 61:1729–1740

    Article  PubMed  CAS  Google Scholar 

  • Feinberg M (1993) The problems of anticholinergic adverse effects in older patients. Drugs Aging 3:335–348

    Article  PubMed  CAS  Google Scholar 

  • Gross NJ (1988) Ipratropium bromide. N Engl J Med 319:486–494

    Article  PubMed  CAS  Google Scholar 

  • Hansel TT, Barnes PJ (2002) Tiotropium bromide: a novel once-daily anticholinergic bronchodilator for the treatment of COPD. Drugs Today (Barc) 38:585–600

    Article  CAS  Google Scholar 

  • Hegde SS (2006) Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol 147(Suppl 2):S80–S87

    Article  PubMed  CAS  Google Scholar 

  • Hegde SS, Chopin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM (1997) Functional Role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol 120:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Hegde SS, Mammen M, Jasper JR (2004) Antimuscarinics for the treatment of overactive bladder: Current options and emerging therapies. Curr Opin Invest Drugs 5(1):40–49

    CAS  Google Scholar 

  • Hosey MM (1992) Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receptors. FASEB J 6:845–852

    PubMed  CAS  Google Scholar 

  • Ikeda K, Kobayashi S, Suzuki M, Miyata K, Takeuchi M, Yamada T, Honda K (2002) M(3) receptor antagonism by the novel antimuscarinic agent solifenacin in the urinary bladder and salivary gland. Naunyn Schmiedeberg’s Arch Pharmacol 366:97–103

    Article  CAS  Google Scholar 

  • Jaiswal N, Lambrecht G, Mutschler E, Tacke R, Malik KU (1991) Pharmacological characterization of the vascular muscarinic receptors mediating relaxation and contraction in rabbit aorta. J Pharmacol Exp Ther 258:842–50

    PubMed  CAS  Google Scholar 

  • Schneider T, Hein P, Michel-Reher MB, Michel MC (2005) Effects of ageing on muscarinic receptor subtypes and function in rat urinary bladder. Naunyn Schmiedeberg’s Arch Pharmacol 372:71–78

    Article  CAS  Google Scholar 

  • Timmermans PB, Van Zwieten PA (1980) Postsynaptic alpha 1- and alpha 2-adrenoceptors in the circulatory system of the pithed rat: selective stimulation of the alpha 2-type by B-HT 933. Eur J Pharmacol 63(2–3):199–202

    Article  PubMed  CAS  Google Scholar 

  • van Charldorp KJ, de JA, Thoolen MJ, van Zwieten PA (1985) Subclassification of muscarinic receptors in the heart, urinary bladder and sympathetic ganglia in the pithed rat. Selectivity of some classical agonists. Naunyn Schmiedeberg’s Arch Pharmacol 331:301–306

    Article  Google Scholar 

  • Wallis RM, Napier CM (1999) Muscarinic antagonists in development for disorders of smooth muscle function. Life Sci 64:395–401

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Angeli P, Melchiorre C, Moser U, Mutschler E, Lambrecht G (1988) Methoctramine selectively blocks cardiac muscarinic M2 receptors in vivo. Naunyn Schmiedeberg’s Arch Pharmacol 338:246–249

    Article  CAS  Google Scholar 

  • Yamada M (2002) The role of muscarinic K(+) channels in the negative chronotropic effect of a muscarinic agonist. J Pharmacol Exp Ther 300:681–687

    Article  PubMed  CAS  Google Scholar 

  • Zhao S-H, Berger J, Miller AK, Flippin LA, Clark RD, Maag H, Stepan G, Watson N, Shetty SG, Cefalu JS, Dawson MW, Rocha C (2001) Novel 2-benzyl-piperidine derivatives as selective M2 muscarinic receptor antagonists. Am Chem Soc Proc 221:ORGN–597

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, S.R., Briones, S., Horger, B. et al. Pharmacological analysis of the interaction of antimuscarinic drugs at M2 and M3 muscarinic receptors in vivo using the pithed rat assay. Naunyn-Schmied Arch Pharmacol 376, 341–349 (2008). https://doi.org/10.1007/s00210-007-0224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0224-0

Keywords

Navigation