Enumerating linear systems on graphs


The divisor theory of graphs views a finite connected graph G as a discrete version of a Riemann surface. Divisors on G are formal integral combinations of the vertices of G, and linear equivalence of divisors is determined by the discrete Laplacian operator for G. As in the case of Riemann surfaces, we are interested in the complete linear system |D| of a divisor D—the collection of nonnegative divisors linearly equivalent to D. Unlike the case of Riemann surfaces, the complete linear system of a divisor on a graph is always finite. We compute generating functions encoding the sizes of all complete linear systems on G and interpret our results in terms of polyhedra associated with divisors and in terms of the invariant theory of the (dual of the) Jacobian group of G. If G is a cycle graph, our results lead to a bijection between complete linear systems and binary necklaces. Our results also apply to a model in which the Laplacian is replaced by an invertible, integral M-matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    For \(q'\in V\), writing \(D+kq = D+kq'+k(q-q')\) shows the dependence is “periodic” with period equal to the order of \([q-q']\in {{\,\mathrm{Jac}\,}}(G)\).

  2. 2.

    We often write \(\omega ^n\) instead of 1 for consistency of notation.

  3. 3.

    This switch in the placement of q was made in order to conform to the conventions for root systems considered in [6]. See Sect. 7.1.1, below.

  4. 4.

    Note that our convention for the Laplacian of a graph differs from that in [6] by a transpose.

  5. 5.

    For this section, in addition to [6], see the work by Gaetz [11].


  1. 1.

    Bacher, R., de la Harpe, P., Nagnibeda, T.: The lattice of integral flows and the lattice of integral cuts on a finite graph. Bull. Soc. Math. France 125(2), 167–198 (1997)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bak, P., Tang, C., Weisenfeld, K.: Self-organized criticality: an explanation of \(1/f\) noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  Google Scholar 

  3. 3.

    Baker, M., Norine, S.: Riemann–Roch and Abel–Jacobi theory on a finite graph. Adv. Math. 215, 766–788 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Baker, Matthew, Shokrieh, Farbod: Chip-firing games, potential theory on graphs, and spanning trees. J. Combin. Theory Ser. A 120(1), 164–182 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Beck, Matthias, Robins, Sinai: Computing the continuous discretely, second ed., Undergraduate Texts in Mathematics, Springer, New York, 2015, Integer-point enumeration in polyhedra, With illustrations by David Austin

  6. 6.

    Benkart, Georgia, Klivans, Caroline, Reiner, Victor: Chip firing on Dynkin diagrams and McKay quivers. Math. Z. 290(1–2), 615–648 (2018)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Björner, A., Lovász, L., Shor, P.W.: Chip-firing games on graphs. Eur. J. Combin. 12(4), 283–291 (1991)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Corry, Scott, Perkinson, David: Divisors and sandpiles, American Mathematical Society, Providence, RI, 2018, An introduction to chip-firing

  9. 9.

    Dhar, D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64(14), 1613–1616 (1990)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gabrielov, A.: Asymmetric abelian avalanches and sandpile, preprint 93–65. Cornell University, MSI (1993)

  11. 11.

    Gaetz, Christian: Critical groups of group representations. Linear Algebra Appl. 508, 91–99 (2016)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Gathmann, Andreas, Kerber, Michael: A Riemann–Roch theorem in tropical geometry. Math. Z. 259(1), 217–230 (2008)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Guzmán, Johnny, Klivans, Caroline: Chip-firing and energy minimization on M-matrices. J. Combin. Theory Ser. A 132, 14–31 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Haase, Christian, Musiker, Gregg, Josephine, Yu.: Linear systems on tropical curves. Math. Z. 270(3–4), 1111–1140 (2012)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs, In and Out of Equilibrium II (V. Sidoravicius and M. E. Vares, eds.), Progress in Probability, vol. 60, Birkhauser, pp. 331–364 (2008)

  16. 16.

    Klivans, Caroline J.: The mathematics of chip-firing, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, (2019)

  17. 17.

    Lorenzini, D.J.: Arithmetical graphs. Math. Ann. 285(3), 481–501 (1989)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Mikhalkin, Grigory, Zharkov, Ilia: Tropical curves, their Jacobians and theta functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, pp. 203–230 (2008)

  19. 19.

    Oh, Suho, Park, Jina: Necklaces and slimes, arXiv:1904.11046, (2019)

  20. 20.

    Perkinson, David, Perlman, Jacob, Wilmes, John: Primer for the algebraic geometry of sandpiles, Tropical and non-Archimedean geometry, Contemp. Math., vol. 605, Am. Math. Soc., Providence, RI, pp. 211–256 ( 2013)

  21. 21.

    Plemmons, R .J.: \(M\)-matrix characterizations. I. Nonsingular \(M\)-matrices. Linear Algebra Appl. 18(2), 175–188 (1977)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Postnikov, Alexander, Shapiro, Boris: Trees, parking functions, syzygies, and deformations of monomial ideals. Trans. Am. Math. Soc. 356(8), 3109–3142 (2004)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Sloane, N.J.A.: The on-line encyclopedia of integer sequences, https://oeis.org. Accessed 7 Jan 2016

  24. 24.

    Richard, P.: Stanley, Invariants of finite groups and their applications to combinatorics. Bull. Am. Math. Soc. (N.S.) 1(3), 475–511 (1979)

    Article  Google Scholar 

  25. 25.

    Sturmfels, Bernd: Algorithms in invariant theory. Texts and monographs in symbolic computation, 2nd edn. Springer, Wien, NewYork, Vienna (2008)

    MATH  Google Scholar 

  26. 26.

    The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 8.2), (2018), http://www.sagemath.org. Accessed 7 Jan 2016

Download references


This work was partially supported by a Reed College Science Research Fellowship and by the Reed College Summer Scholarship Fund. The first author is supported by the NSF Graduate Research Fellowship Program under Grant No. 00074041. We thank Gopal Goel, Gregg Musiker, and Vic Reiner for helpful discussions. We thank Scott Corry and an anonymous referee for their comments. We would also like to acknowledge our extensive use of the mathematical software SageMath [26] and the On-line Encyclopedia of Integer Sequences [23].

Author information



Corresponding author

Correspondence to Sarah Brauner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brauner, S., Glebe, F. & Perkinson, D. Enumerating linear systems on graphs. Math. Z. 296, 1101–1134 (2020). https://doi.org/10.1007/s00209-020-02473-0

Download citation


  • Divisor theory of graphs
  • Complete linear system
  • Chip-firing
  • Graph Laplacian
  • Binary necklaces
  • M-matrix

Mathematics Subject Classification

  • Primary 05C30
  • Secondary 05C25