A foliation of the ball by complete holomorphic discs

Abstract

We show that the open unit ball \(\mathbb {B}^n\) of \(\mathbb {C}^n\)\((n>1)\) admits a nonsingular holomorphic foliation by complete properly embedded holomorphic discs.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alarcón, A.: Complete complex hypersurfaces in the ball come in foliations. ArXiv e-prints, (2018). arXiv:1802.02004

  2. 2.

    Alarcón, A., Forstnerič, F.: Every bordered Riemann surface is a complete proper curve in a ball. Math. Ann. 357(3), 1049–1070 (2013)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math. 196(3), 733–771 (2014)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Alarcón, A., Forstnerič, F.: The Calabi-Yau problem for Riemann surfaces with finite genus and countably many ends. Rev. Mat. Iberoam., to appear. arXiv e-prints. arXiv:1904.08015

  5. 5.

    Alarcón, A., Forstnerič, F.: New complex analytic methods in the theory of minimal surfaces: a survey. J. Aust. Math. Soc. 106(3), 287–341 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Alarcón, A., Globevnik, J.: Complete embedded complex curves in the ball of \({\mathbb{C}}^2\) can have any topology. Anal. PDE 10(8), 1987–1999 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Alarcón, A., Globevnik, J., López, F.J.: A construction of complete complex hypersurfaces in the ball with control on the topology. J. Reine Angew. Math. 751, 289–308 (2019)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Alarcón, A., López, F.J.: Null curves in \(\mathbb{C}^3\) and Calabi-Yau conjectures. Math. Ann. 355(2), 429–455 (2013)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Alarcón, A., López, F.J.: Complete bounded embedded complex curves in \(\mathbb{C}^2\). J. Eur. Math. Soc. (JEMS) 18(8), 1675–1705 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Charpentier, S., Kosiński, Ł.: Construction of labyrinths in pseudoconvex domains. arXiv e-prints, (Jul 2019). arXiv:1907.02803

  11. 11.

    Drinovec Drnovšek, B.: Complete proper holomorphic embeddings of strictly pseudoconvex domains into balls. J. Math. Anal. Appl. 431(2), 705–713 (2015)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Forstnerič, F.: Noncritical holomorphic functions on Stein manifolds. Acta Math. 191(2), 143–189 (2003)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Forstnerič, F., Rosay, J.-P.: Approximation of biholomorphic mappings by automorphisms of \({\mathbb{C}}^n\). Invent. Math. 112(2), 323–349 (1993). (Erratum: Invent. Math., 118(3):573–574, 1994)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Forstnerič, F.: Stein manifolds and holomorphic mappings (The homotopy principle in complex analysis), volume 56 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2nd edn. Springer, Cham (2017)

  15. 15.

    Globevnik, J.: A complete complex hypersurface in the ball of \({\mathbb{C}}^N\). Ann. of Math. (2) 182(3), 1067–1091 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Globevnik, J.: Holomorphic functions unbounded on curves of finite length. Math. Ann. 364(3–4), 1343–1359 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Jones, P.W.: A complete bounded complex submanifold of \({ C}^{3}\). Proc. Am. Math. Soc. 76(2), 305–306 (1979)

    MATH  Google Scholar 

  18. 18.

    Stout, E.L.: Polynomial Convexity, Volume 261 of Progress in Mathematics. Birkhäuser Boston Inc, Boston (2007)

  19. 19.

    Yang, P.: Curvatures of complex submanifolds of \({ C}^{n}\). J. Differ. Geom. 12(4), 499–511 (1977). (1978)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

A. Alarcón is supported by the State Research Agency (SRA) and European Regional Development Fund (ERDF) via the Grant no. MTM2017-89677-P, MICINN, Spain. F. Forstnerič is supported by the research program P1-0291 and the research Grant J1-9104 from ARRS, Republic of Slovenia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Alarcón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alarcón, A., Forstnerič, F. A foliation of the ball by complete holomorphic discs. Math. Z. 296, 169–174 (2020). https://doi.org/10.1007/s00209-019-02430-6

Download citation

Keywords

  • Riemann surface
  • Holomorphic disc
  • Foliation
  • Complete Riemannian manifold

Mathematics Subject Classification

  • 32B15
  • 32H02
  • 32M17
  • 53C12