Brauer’s height zero conjecture for two primes


Let p and q be two primes. We propose that Brauer’s Height Zero Conjecture for the principal p-blocks of finite groups can naturally be extended from the perspective of q. We prove one direction of this new conjecture, and show the reverse direction assuming that the Inductive Alperin–McKay condition holds for the finite simple groups.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alperin, J.L.: Isomorphic blocks. J. Algebra 48, 694–698 (1976)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Beltrán, A., Felipe, M.J., Malle, G., Moretó, A., Navarro, G., Sanus, L., Solomon, R., Tiep, P.H.: Nilpotent and Abelian Hall subgroups in finite groups. Trans. Am. Math. Soc. 368, 2497–2513 (2016)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bessenrodt, C., Navarro, G., Olsson, J.B., Tiep, P.H.: On the Navarro-Willems conjecture for blocks of finite groups. J. Pure Appl. Algebra 208, 481–484 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cabanes, M., Enguehard, M.: On unipotent blocks and their ordinary characters. Invent. Math. 117, 149–164 (1994)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Carter, R.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. Wiley, Chichester (1985)

    MATH  Google Scholar 

  6. 6.

    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985)

    MATH  Google Scholar 

  7. 7.

    Enguehard, M.: Sur les \(l\)-blocs unipotents des groupes réductifs finis quand \(l\) est mauvais. J. Algebra 230, 334–377 (2000)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Giannelli, E., Malle, G., Vallejo, C.: Even degree characters in principal blocks. J. Pure Appl. Algebra 223, 900–907 (2019)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups. Number 3. Mathematical Surveys and Monographs, vol. 40.3. American Mathematical Society, Providence, RI (1998)

  10. 10.

    Isaacs, I.M.: Finite Group Theory. Graduate Studies in Mathematics, 92. American Mathematical Society, Providence, RI (2008)

  11. 11.

    Isaacs, I.M., Scott, L.: Blocks and subgroups. J. Algebra 20, 630–636 (1972)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Kessar, R., Malle, G.: Quasi-isolated blocks and Brauer’s height zero conjecture. Ann. Math. (2) 178, 321–384 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kessar, R., Malle, G.: Brauer’s height zero conjecture for quasi-simple groups. J. Algebra 475, 43–60 (2017)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Malle, G.: Height 0 characters of finite groups of Lie type. Represent. Theory 11, 192–220 (2007)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Navarro, G.: Characters and Blocks of Finite Groups. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  16. 16.

    Navarro, G.: Character Theory and the McKay Conjecture. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  17. 17.

    Navarro, G., Späth, B.: On Brauer’s Height Zero Conjecture. J. Eur. Math. Soc. 16, 695–747 (2014)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Navarro, G., Tiep, P.H.: Brauer’s height zero conjecture for the 2-blocks of maximal defect. J. Reine Angew. Math. 669, 225–247 (2012)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Navarro, G., Wolf, T.R.: Character degrees and blocks of finite groups. J. Reine Angew. Math. 531, 141–146 (2001)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Späth, B.: A reduction theorem for the Alperin-McKay conjecture. J. Reine Angew. Math. 680, 153–189 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gabriel Navarro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gunter Malle gratefully acknowledges financial support by SFB TRR 195. The research of Gabriel Navarro is supported by MTM2016-76196-P and FEDER funds. He also thanks B. Späth for some discussions on Theorem 2.1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malle, G., Navarro, G. Brauer’s height zero conjecture for two primes. Math. Z. 295, 1723–1732 (2020).

Download citation


  • Brauer’s Height Zero Conjecture

Mathematics Subject Classification

  • Primary 20C15