On prime vs. prime power pairs

Abstract

In this paper, we consider pairs of a prime and a prime power with a fixed difference. We prove an average result on the distribution of such pairs. This is a partial improvement of the result of Bauer (Acta Arith. 85:99–118, 1998).

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    See the estimate (20) in Sect. 5.

  2. 2.

    Recall that we assume that H is a positive integer.

  3. 3.

    Notice that \(HM^{\frac{1}{k}-1}\gg 1\) by the assumption \(M^{1-\frac{1}{k}}\le H\).

  4. 4.

    Recall that we assume that U is a positive integer.

References

  1. 1.

    Baier, S., Zhao, L.: Primes in quadratic progressions on average. Math. Ann. 338(4), 963–982 (2007)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Baier, S., Zhao, L.: On primes in quadratic progressions. Int. J. Number Theory 5(6), 1017–1035 (2009)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bateman, P.T., Horn, R.A.: A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp. 16(79), 363–367 (1962)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bauer, C.: On the sum of a prime and the \(k\)-th power of a prime. Acta Arith. 85(2), 99–118 (1998)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bauer, C.: On the exceptional set for the sum of a prime and the \(k\)-th power of a prime. Stud. Sci. Math. Hung. 35, 291–330 (1999)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Foo, T., Zhao, L.: On primes represented by cubic polynomials. Math. Z. 274(1–2), 323–340 (2013)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Gallagher, P.X.: A large sieve density estimate near \(\sigma =1\). Invent. Math. 11(4), 329–339 (1970)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Iwaniec, H., Kowalski, E.: Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)

    Google Scholar 

  9. 9.

    Kawada, K.: A zero density estimate for Dedekind zeta functions of pure extension fields. Tsukuba J. Math. 22(2), 357–369 (1998)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Landau, E.: Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Rie- mannschen Zetafunktion. In: 5th International Congress of Mathematicians (ICM) (1913). https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1912.1/ICM1912.1.ocr.pdf (Reprinted from Jahresbericht der Deutschen Mathematiker-Vereinigung 21, 208–228 (1912). https://eudml.org/doc/urn:eudml:doc:145337)

  11. 11.

    Liu, J.Y., Zhan, T.: On a theorem of Hua. Arch. Math. 69(5), 375–390 (1997)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Matomäki, K., Radziwiłł, M., Tao, T.: Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges. Proc. Lond. Math. Soc 118(2), 284–350 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Mikawa, H.: On prime twins. Tsukuba J. Math. 15(1), 19–29 (1991)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Mikawa, H.: On the sum of a prime and a square. Tsukuba J. Math. 17(2), 299–310 (1993)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Mikawa, H.: On the sum of three squares of primes. In: Motohashi, Y. (ed.) Analytic number theory, pp. 253–264. Cambridge University Press, London (1997)

    Google Scholar 

  16. 16.

    Mikawa, H., Peneva, T.: Sums of five cubes of primes. Stud. Sci. Math. Hungar. 46(3), 345–354 (2009)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Montgomery, H.L.: Topics in multiplicative number theory. Lecture notes in mathematics, vol. 227. Springer, Berlin (1971)

    Book  Google Scholar 

  18. 18.

    Montgomery, H.L., Vaughan, R.C.: Multiplicative number theory I. Classical theory, Cambridge studies in advanced mathematics, vol. 97. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  19. 19.

    Perelli, A., Pintz, J.: On the exceptional set for Goldbach’s problem in short intervals. J. Lond. Math. Soc. 47(1), 41–49 (1993)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Perelli, A., Pintz, J.: Hardy–Littlewood numbers in short intervals. J. Number Theory 54(2), 297–308 (1995)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Perelli, A., Zaccagnini, A.: On the sum of a prime and a \(k\)-th power. Izv. Ross. Akad. Nauk Ser. Math. 59(1), 185–200 (1995)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Tatuzawa, T.: On the number of the primes in an arithmetic progression. Jpn. J. Math. 21, 93–111 (1951)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Kohji Matsumoto, Hiroshi Mikawa, Koichi Kawada and Alberto Perelli for their helpful comments and suggestions. This work was supported by Grant-in-Aid for JSPS Research Fellow (Grant Number: JP16J00906).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuta Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y. On prime vs. prime power pairs. Math. Z. 295, 681–710 (2020). https://doi.org/10.1007/s00209-019-02384-9

Download citation

Keywords

  • Waring–Goldbach problem
  • Circle method

Mathematics Subject Classification

  • Primary 11P32
  • Secondary 11P55