Skip to main content
Log in

On prime vs. prime power pairs

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we consider pairs of a prime and a prime power with a fixed difference. We prove an average result on the distribution of such pairs. This is a partial improvement of the result of Bauer (Acta Arith. 85:99–118, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See the estimate (20) in Sect. 5.

  2. Recall that we assume that H is a positive integer.

  3. Notice that \(HM^{\frac{1}{k}-1}\gg 1\) by the assumption \(M^{1-\frac{1}{k}}\le H\).

  4. Recall that we assume that U is a positive integer.

References

  1. Baier, S., Zhao, L.: Primes in quadratic progressions on average. Math. Ann. 338(4), 963–982 (2007)

    Article  MathSciNet  Google Scholar 

  2. Baier, S., Zhao, L.: On primes in quadratic progressions. Int. J. Number Theory 5(6), 1017–1035 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bateman, P.T., Horn, R.A.: A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp. 16(79), 363–367 (1962)

    Article  MathSciNet  Google Scholar 

  4. Bauer, C.: On the sum of a prime and the \(k\)-th power of a prime. Acta Arith. 85(2), 99–118 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bauer, C.: On the exceptional set for the sum of a prime and the \(k\)-th power of a prime. Stud. Sci. Math. Hung. 35, 291–330 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Foo, T., Zhao, L.: On primes represented by cubic polynomials. Math. Z. 274(1–2), 323–340 (2013)

    Article  MathSciNet  Google Scholar 

  7. Gallagher, P.X.: A large sieve density estimate near \(\sigma =1\). Invent. Math. 11(4), 329–339 (1970)

    Article  MathSciNet  Google Scholar 

  8. Iwaniec, H., Kowalski, E.: Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)

    Google Scholar 

  9. Kawada, K.: A zero density estimate for Dedekind zeta functions of pure extension fields. Tsukuba J. Math. 22(2), 357–369 (1998)

    Article  MathSciNet  Google Scholar 

  10. Landau, E.: Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Rie- mannschen Zetafunktion. In: 5th International Congress of Mathematicians (ICM) (1913). https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM1912.1/ICM1912.1.ocr.pdf (Reprinted from Jahresbericht der Deutschen Mathematiker-Vereinigung 21, 208–228 (1912). https://eudml.org/doc/urn:eudml:doc:145337)

  11. Liu, J.Y., Zhan, T.: On a theorem of Hua. Arch. Math. 69(5), 375–390 (1997)

    Article  MathSciNet  Google Scholar 

  12. Matomäki, K., Radziwiłł, M., Tao, T.: Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges. Proc. Lond. Math. Soc 118(2), 284–350 (2019)

    Article  MathSciNet  Google Scholar 

  13. Mikawa, H.: On prime twins. Tsukuba J. Math. 15(1), 19–29 (1991)

    Article  MathSciNet  Google Scholar 

  14. Mikawa, H.: On the sum of a prime and a square. Tsukuba J. Math. 17(2), 299–310 (1993)

    Article  MathSciNet  Google Scholar 

  15. Mikawa, H.: On the sum of three squares of primes. In: Motohashi, Y. (ed.) Analytic number theory, pp. 253–264. Cambridge University Press, London (1997)

    Chapter  Google Scholar 

  16. Mikawa, H., Peneva, T.: Sums of five cubes of primes. Stud. Sci. Math. Hungar. 46(3), 345–354 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Montgomery, H.L.: Topics in multiplicative number theory. Lecture notes in mathematics, vol. 227. Springer, Berlin (1971)

    Book  Google Scholar 

  18. Montgomery, H.L., Vaughan, R.C.: Multiplicative number theory I. Classical theory, Cambridge studies in advanced mathematics, vol. 97. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  19. Perelli, A., Pintz, J.: On the exceptional set for Goldbach’s problem in short intervals. J. Lond. Math. Soc. 47(1), 41–49 (1993)

    Article  MathSciNet  Google Scholar 

  20. Perelli, A., Pintz, J.: Hardy–Littlewood numbers in short intervals. J. Number Theory 54(2), 297–308 (1995)

    Article  MathSciNet  Google Scholar 

  21. Perelli, A., Zaccagnini, A.: On the sum of a prime and a \(k\)-th power. Izv. Ross. Akad. Nauk Ser. Math. 59(1), 185–200 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Tatuzawa, T.: On the number of the primes in an arithmetic progression. Jpn. J. Math. 21, 93–111 (1951)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Kohji Matsumoto, Hiroshi Mikawa, Koichi Kawada and Alberto Perelli for their helpful comments and suggestions. This work was supported by Grant-in-Aid for JSPS Research Fellow (Grant Number: JP16J00906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y. On prime vs. prime power pairs. Math. Z. 295, 681–710 (2020). https://doi.org/10.1007/s00209-019-02384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02384-9

Keywords

Mathematics Subject Classification

Navigation