Skip to main content
Log in

Measures of weak non-compactness in spaces of nuclear operators

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show that in the space of nuclear operators from \(\ell ^q(\Lambda )\) to \(\ell ^p(J)\) (where \(p,q\in (1,\infty )\)) the two natural ways of measuring weak non-compactness coincide. We also provide explicit formulas for these measures. As a consequence the same is proved for preduals of atomic von Neumann algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann, C.A., Anderson, J.: Lyapunov theorems for operator algebras. Mem. Am. Math. Soc. 94(458), iv+88 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Angosto, C., Cascales, B.: The quantitative difference between countable compactness and compactness. J. Math. Anal. Appl. 343(1), 479–491 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angosto, C., Cascales, B.: Measures of weak noncompactness in Banach spaces. Topol. Appl. 156(7), 1412–1421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Astala, K., Tylli, H.-O.: Seminorms related to weak compactness and to Tauberian operators. Math. Proc. Camb. Philos. Soc. 107(2), 367–375 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendová, H., Kalenda, O.F.K., Spurný, J.: Quantification of the Banach–Saks property. J. Funct. Anal. 268(7), 1733–1754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blackadar, B.: Operator Algebras, Theory of $C^*$-algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III, Encyclopaedia of Mathematical Sciences, vol. 122. Springer, Berlin (2006)

  7. Cascales, B., Marciszewski, W., Raja, M.: Distance to spaces of continuous functions. Topol. Appl. 153(13), 2303–2319 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cascales, B., Kalenda, O.F.K., Spurný, J.: A quantitative version of James’s compactness theorem. Proc. Edinb. Math. Soc. (2) 55(2), 369–386 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Blasi, F .S.: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 21(69)(3—-4), 259–262 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  11. Fabian, M., Hájek, P., Montesinos, V., Zizler, V.: A quantitative version of Krein’s theorem. Rev. Mat. Iberoam. 21(1), 237–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fabian, M., Montesinos, V., Zizler, V.: A characterization of subspaces of weakly compactly generated Banach spaces. J. Lond. Math. Soc. (2) 69(2), 457–464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Granero, A.S.: An extension of the Krein-Šmulian theorem. Rev. Mat. Iberoam. 22(1), 93–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Granero, A.S., Hernández, J.M., Pfitzner, H.: The distance ${\rm dist}({\cal{B}}, X)$ when $\cal{B}$ is a boundary of $B(X^{\ast \ast })$. Proc. Am. Math. Soc. 139(3), 1095–1098 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grothendieck, A.: Espaces vectoriels topologiques. Instituto de Matemática Pura e Aplicada, Universidade de São Paulo, São Paulo (1954)

  16. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16, 140 (1955)

    MATH  Google Scholar 

  17. Kačena, M., Kalenda, O.F.K., Spurný, J.: Quantitative Dunford–Pettis property. Adv. Math. 234, 488–527 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras. Vol. II, Graduate Studies in Mathematics, vol. 16, Advanced theory, Corrected reprint of the 1986 original. American Mathematical Society, Providence (1997)

  19. Kalenda, O.F.K., Spurný, J.: Quantification of the reciprocal Dunford–Pettis property. Stud. Math. 210(3), 261–278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meise, R., Vogt, D.: Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, Translated from the German by M. S. Ramanujan and revised by the authors. The Clarendon Press, Oxford University Press, New York (1997)

  21. Ryan, R.A.: Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej F. K. Kalenda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Our research was supported in part by the Grant GAČR 17-00941S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamhalter, J., Kalenda, O.F.K. Measures of weak non-compactness in spaces of nuclear operators. Math. Z. 292, 453–471 (2019). https://doi.org/10.1007/s00209-019-02264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02264-2

Keywords

Mathematics Subject Classification

Navigation