Skip to main content
Log in

Affine Brauer category and parabolic category \({\mathcal {O}}\) in types BCD

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A strict monoidal category referred to as affine Brauer category \(\mathcal {AB}\) is introduced over a commutative ring \(\kappa \) containing multiplicative identity 1 and invertible element 2. We prove that morphism spaces in \(\mathcal {AB}\) are free over \(\kappa \). The cyclotomic (or level k) Brauer category \(\mathcal {CB}^f(\omega )\) is a quotient category of \(\mathcal {AB}\). We prove that any morphism space in \(\mathcal {CB}^f(\omega )\) is free over \(\kappa \) with maximal rank if and only if the \({\mathbf {u}}\)-admissible condition holds in the sense of (1.32). Affine Nazarov–Wenzl algebras (Nazarov in J Algebra 182(3):664–693, 1996) and cyclotomic Nazarov–Wenzl algebras (Ariki et al. in Nagoya Math J 182:47–134, 2006) will be realized as certain endomorphism algebras in \(\mathcal {AB}\) and \(\mathcal {CB}^f(\omega )\), respectively. We will establish higher Schur–Weyl duality between cyclotomic Nazarov–Wenzl algebras and parabolic BGG categories \({\mathcal {O}}\) associated to symplectic and orthogonal Lie algebras over the complex field \(\mathbb C\). This enables us to use standard arguments in (Anderson et al. in Pac J Math 292(1):21–59, 2018; Rui and Song in Math Zeit 280(3–4):669–689, 2015; Rui and Song in J Algebra 444:246–271, 2015), to compute decomposition matrices of cyclotomic Nazarov–Wenzl algebras. The level two case was considered by Ehrig and Stroppel in (Adv. Math. 331:58–142, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this paper, we consider both \({\mathbf {U}}({\mathfrak {g}}){-fmod}\) and \({\mathbf {U}}({\mathfrak {g}}){-mod}\) as strict monoidal categories by identifying \((M_1\otimes M_2)\otimes M_3\) (resp., \(M_1\otimes \mathbb C\) and \( \mathbb C\otimes M_1\)) with \(M_1\otimes (M_2\otimes M_3)\) (resp., \(M_1\)) for all admissible \(M_1,M_2,M_3\).

References

  1. Anderson, H., Stroppel, C., Tubbenhauer, D.: Cellular structures using \(_q\)-tilting modules. Pac. J. Math. 292(1), 21–59 (2018)

    Article  MATH  Google Scholar 

  2. Ariki, S., Mathas, A., Rui, H.: Cyclotomic Nazarov–Wenzl algebras. Nagoya Math. J. 182, 47–134 (2006). Special issue in honor of Prof. G. Lusztig’s sixty birthday

    Article  MathSciNet  MATH  Google Scholar 

  3. Auslander, M., Reiten, I., Smalo, S.: Representation Theory of Artin Algebras, vol. 36. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  4. Balagovic, M., Daugherty, Z., Entova-Aizenbud, I., Halacheva, I., Hennig, J., Im, M.S., Letzter, G., Norton, E., Serganova, V., Stroppel, C.: The affine VW supercategory. arXiv:1801.04178v1

  5. Bourbaki, N.: Groupes: et algèbres de Lie. Masson, Paris (1990)

    MATH  Google Scholar 

  6. Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. 38, 857–872 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brundan, J.: Representations of the oriented skein category. arXiv:1712.08953

  8. Brundan, J., Comes, J., Nash, D., Reynolds, A.: A basis theorem for the degenerate affine oriented Brauer category and its cyclotomic quotients. Quantum Topol. 8(1), 75–112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brundan, J., Ellis, A.P.: Monoidal supercategories. Commun. Math. Phys. 351, 1045–1089 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Comes, J., Kujawa, J.R.: A basis theorem for the degenerate affine oriented Brauer–Clifford supercategory. arXiv:1706.09999v1

  11. Comes, J., Wilson, B.: Deligne’s category \({\underline{{\rm Rep}}}GL_\delta \) and representations of general linear supergroups. Represent. Theory Am. Math. Soc. 16, 568–609 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daugherty, Z., Ram, A., Virk, R.: Affine and degenerate affine BMW algebras: actions on tensor space. Sel. Math. 19(2), 611–653 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deligne, P., Milne, J.: Tannakian categories, Hodge cycles, motives, and Shimura varieties. Lect. Notes Math. 900, 101–228 (1982)

    Article  Google Scholar 

  14. Ehrig, M., Stroppel, C.: Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality Adv. Math. 331, 58–142 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence (2015)

  16. Gao, M., Rui, H., Song, L., Su, Y.: Affine walled Brauer–Clifford superalgebras. arXiv:1708.05135v1

  17. Goodman, F.M.: Remarks on cyclotomic and degenerate cyclotomic BMW algebras. J. Algebra 364, 13–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category \({\cal{O}}\). Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence (2008)

    Google Scholar 

  20. Lehrer, G., Zhang, R.B.: The first fundamental theorem of invariant theory for the orthosymplectic supergroup. Commun. Math. Phys. 349(2), 661–702 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lehrer, G., Zhang, R.B.: The Brauer category and invariant theory. J. Eur. Math. Soc. 17(9), 863–70 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Molve, A.: Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 143. American Mathematical Society, Providence (2007)

    Book  Google Scholar 

  23. Musson, I.M.: Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics, vol. 131. American Mathematical Society, Providence (2012)

    Book  MATH  Google Scholar 

  24. Nazarov, M.: Young’s orthogonal form for Brauer’s centralizer algebra. J. Algebra 182(3), 664–693 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reynolds, A.: Representation of oriented Brauer categories. PhD thesis, University of Oregon (2015)

  26. Rui, H., Song, L.: Decomposition numbers of quantized walled Brauer algebras. Math. Zeit. 280(3–4), 669–689 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rui, H., Song, L.: Decomposition matrices of Birman–Murakami–Wenzl algebras. J. Algebra 444, 246–271 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomason, R.W.: Symmetric monoidal categories model all connective spectra. Theory Appl. Categ. 1(5), 78–118 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Turaev, V.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics, vol. 18. De Gruyter, Berlin (2016)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebing Rui.

Additional information

H. Rui is supported partially by NSFC (Grant no. 11571108). L. Song is supported partially by NSFC (Grant no. 11501368) and the Fundamental Research Funds for the Central Universities (Grant no. 22120180001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui, H., Song, L. Affine Brauer category and parabolic category \({\mathcal {O}}\) in types BCD. Math. Z. 293, 503–550 (2019). https://doi.org/10.1007/s00209-018-2207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2207-x

Navigation