Skip to main content
Log in

Integral Gassman equivalence of algebraic and hyperbolic manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we construct arbitrarily large families of smooth projective varieties and closed Riemannian manifolds that share many algebraic and analytic invariants. For instance, every non-arithmetic, closed hyperbolic 3-manifold admits arbitrarily large collections of non-isometric finite covers which are strongly isospectral, length isospectral, and have isomorphic integral cohomology where the isomorphisms commute with restriction and co-restriction. We can also construct arbitrarily large collections of pairwise non-isomorphic smooth projective surfaces where these isomorphisms in cohomology are natural with respect to Hodge structure or as Galois modules. In particular, the projective varieties have isomorphic Picard and Albanese varieties, and they also have isomorphic effective Chow motives. Our construction employs an integral refinement of the Gassman–Sunada construction that has recently been utilized by D. Prasad. One application of our work shows the non-injectivity of the map from the Grothendieck group of varieties over \(\overline{\mathbf {Q}}\) to the Grothendieck group of the category of effective Chow motives. We also answer a question of D. Prasad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agol, I.: The virtual Haken Conjecture, with an appendix by I. Agol, D. Groves. J. Manning Doc. Math. 18, 1045–1087 (2013)

    MATH  Google Scholar 

  2. André, Y.: Une introduction aux motifs (motifs purs, motifs mixtes, priodes) Panoramas et Synthéses , vol. 17. Socit́é Mathématique de France, Paris, pp xii+261 (2004)

  3. Bartel, A., Page, A.: Torsion homology and regulators of isospectral manifolds. J. Topol. 9, 1237–1256 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartel, A., Page, A.: Group representations in the homology of 3-manifolds. arXiv:1605.04866

  5. Belolipetsky, M., Lubotzky, A.: Finite groups and hyperbolic manifolds. Invent. Math. 162, 459–472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bittner, F.: The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140, 1011–1032 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borel, A.: Commensurability classes and volumes of hyperbolic \(3\)-manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8(1), 1–33 (1981)

    MathSciNet  MATH  Google Scholar 

  8. Borisov, L.: Class of the affine line is a zero divisor in the Grothendieck ring. arXiv:1412.6194

  9. Brown, K.S.: Cohomology of groups, Graduate Texts in Mathematics, vol. 87. Springer, New York, Berlin (1982). x+306

    Google Scholar 

  10. Calabi, E., Vesentini, E.: On compact, locally symmetric Kähler manifolds. Ann. Math. 71, 472–507 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colmez, P., Serre, J.-P.: Grothendieck–Serre correspondence. AMS, Providence (2004)

  12. Deligne, P.: Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA \(4\frac{1}{2}\). Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier. Lecture Notes in Mathematics, vol. 569. Springer, Berlin, New York, pp. iv+312 (1977)

  13. Deligne, P., Mostow, G.D.: Monodromy of hypergeometric functions and nonlattice integral monodromy. Publ. Math., Inst. Hautes Étud. Sci. 63, 5–89 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deraux, M.: Forgetful maps between Deligne-Mostow ball quotients. Geom. Dedic. 150, 377–389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deraux, M., Parker, J., Paupert, J.: New non-arithmetic complex hyperbolic lattices. Invent. Math. 203, 681–771 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fulton, W.: Intersection theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  17. Gelander, T., Levit, A.: Counting commensurability classes of hyperbolic manifolds. Geom. Funct. Anal. 24, 1431–1447 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldman, W.M.: Complex hyperbolic geometry. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  19. Gromov, M., Piatetski-Shapiro, I.: Non-arithmetic groups in Lobachevsky spaces. Publ. Math., Inst. Hautes Étud. Sci. 66, 93–103 (1987)

    Article  MATH  Google Scholar 

  20. Hall, P.: The Eulerian functions of a group. Q. J. Math. 7, 134–151 (1936)

    Article  MATH  Google Scholar 

  21. Kapovich, M.: On normal subgroups in the fundamental groups of complex surfaces (1998). arXiv:math/9808085

  22. Kleiman, S.: Motives, Algebraic geometry, Oslo 1970, pp. 53–82. Wolters-Noordhoff, Groningen (1972)

  23. Larsen, M., Lunts, V.: Motivic measures and stable birational geometry. Mosc. Math. J. 3, 85–95 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lauret, E.A., Miatello, R.J., Rossetti, J.P.: Strongly isospectral manifolds with nonisomorphic cohomology rings. Rev. Mat. Iberoam. 29, 611–634 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leininger, C.J., McReynolds, D.B., Neumann, W.D., Reid, A.W.: Length and eigenvalue equivalence. Int. Math. Res. Not. 24, 24 (2007)

    MATH  Google Scholar 

  26. Linowitz, B., McReynolds, D.B., Miller, N.: Locally equivalent correspondences. Ann. Inst. Fourier 67, 451–482 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lubotzky, A.: Free quotients and the first Betti number of some hyperbolic manifolds. Transform. Groups 1, 71–82 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory. Presentations of groups in terms of generators and relations. Dover Publications, New York (1976)

    MATH  Google Scholar 

  29. Margulis, G.A.: Discrete subgroups of semisimple Lie groups. Springer, New York (1991)

    Book  MATH  Google Scholar 

  30. McReynolds, D.B.: Isospectral locally symmetric manifolds. Indiana Univ. Math. J. 63, 533–549 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milne, J.: Étale cohomology, Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980)

    Google Scholar 

  32. Mostow, G.D.: Strong rigidity of locally symmetric spaces, Annals of mathematics studies, vol. 78. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  33. Perlis, R.: On the equation \(\zeta _K(s) = \zeta _{K^{\prime }}(s)\). J. Number Theory 9, 342–360 (1977)

    Article  MathSciNet  Google Scholar 

  34. Prasad, D., Rajan, C.S.: On an Archimedean analogue of Tate’s conjecture. J. Number Theory 99, 180–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Prasad, D.: A refined notion of arithmetically equivalent number fields, and curves with isomorphic Jacobians. Adv. Math. 312, 198–208 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Prasad, G.: Strong rigidity of \(\mathbf{Q}\)-rank 1 lattices. Invent. Math. 21, 255–286 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ratcliffe, J.G.: Foundations of hyperbolic manifolds. Springer, New York (2006)

    MATH  Google Scholar 

  38. Scholl, T.: Classical Motives, Motives, Proc. Sympos. Pure Math., vol. 55, Part 1, pp. 163–187 (1994)

  39. Scott, L.: Integral equivalence of permutation representations, Group theory, pp. 262–274 (1993)

  40. Serre, J-P.: Facteurs locaux des fonctions zêta des variétés algébriques (Définitions et conjectures), Theorie Nombres, Semin. Delange-Pisot-Poitou 11 (1969/70), no. 19 (1970)

  41. Shafarevich, I.: Basic algebraic geometry. Springer, New York (1974)

    Book  MATH  Google Scholar 

  42. Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. 121, 169–186 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Toledo, D.: Maps between complex hyperbolic surfaces. Geom. Dedic. 97, 115–128 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Thurston, W.: The geometry and topology of 3-manifolds. Princeton lecture notes, Princeton (1978)

  45. Voisin, C.: Hodge theory and complex algebraic geometry. I. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  46. Wang, H.S.: Topics on totally discontinuous groups. Pure Appl. Math. 8, 459–487 (1972)

    MathSciNet  Google Scholar 

  47. Wells, R.: Differential analysis on complex manifolds. Springer, New York (2008)

    Book  MATH  Google Scholar 

  48. Zucker, S.: Hodge theory with degenerating coefficients. \(L^2\) cohomology in the Poincaré metric. Ann. Math. 109, 415–476 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nick Miller, Deepam Patel, Alan Reid, and Matthew Stover for conversations on the topics in this paper. We would also like to thank the referee for helpful comments that helped improve the clarify of the article. The first author was partially supported by an NSF Grant. The third author was partially supported by NSF Grant DMS-1408458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. McReynolds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arapura, D., Katz, J., McReynolds, D.B. et al. Integral Gassman equivalence of algebraic and hyperbolic manifolds. Math. Z. 291, 179–194 (2019). https://doi.org/10.1007/s00209-018-2077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2077-2

Keywords

Mathematics Subject Classification

Navigation