Skip to main content
Log in

An ODE approach for fractional Dirichlet problems with gradient nonlinearity

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In the present work we study existence of solutions of fractional Dirichlet problems in the presence of coercive gradient terms with growth comparable and slightly bigger than the order of the nonlocal elliptic operator. We develop a 1-dimensional reduction that allows us to construct barriers via ODE methods and therefore to obtain existence results based on an integral criterion that resembles the classical second-order case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatangelo, N.: Very large solutions for the fractional Laplacian: towards a fractional Keller-Osserman condition, Adv. Nonlinear Anal. ISSN (Online) 2191-950X, ISSN (Print) 2191-9496 (2016). https://doi.org/10.1515/anona-2015-0150

  2. Abdellaoui, B., Peral, I.: Towards a deterministic KPZ equation with fractional diffusion: the stationary case. Preprint

  3. Alarcón, S., García-Melián, J., Quaas, A.: Existence and non-existence of solutions to elliptic equations with a general convection term. Proc. R. Soc. Edinburgh: Sec. A 144(2), 225–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-differential equations. Annales de L’I.H.P., section C 13(3), 293–317 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Barles, G., Chasseigne, E., Imbert, C.: On the Dirichlet problem for second order elliptic integro-differential equations. Indiana Univ. Math. J. 57(1), 213–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. IHP Anal. Non Linéare 25(3), 567–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barles, G., Perthame, B.: Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Opt. 26, 1133–1148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barles, G., Topp, E.: Existence, uniqueness and asymptotic behavior for nonlocal parabolic problems with dominating gradient terms. SIAM J. Math. Anal. 48(2), 1512–1547 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bogdan, K., Burdzy, K., Chen, Z.-Q.: Censored stable processes. Prob. Theory Rel. Fields 127(1), 89–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Da Lio, F.: Comparison results for quasilinear equations in annular domains and applications. Comm. Partial Diff. Equ. 27(1 & 2), 283–323 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dávila, G., Quaas, A., Topp, E.: Continuous viscosity solutions for nonlocal Dirichlet problems with coercive gradient terms. Math. Ann. (2016). https://doi.org/10.1007/s00208-016-1481-3

  13. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s Guide to the Fractional Sobolev Spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001)

    MATH  Google Scholar 

  15. Ishii, H.: Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55, 369–384 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ishii, H., Nakamura, G.: A class of integral equations and approximation of p-Laplace equations. Calc. Var. PDE, 37, 485–522 (2010)

  17. Lasry, J.M., Lions, P.L.: Nonlinear elliptic Equations with Singular Boundary Conditions and Stochastic Control with State Constraints. Math. Ann. 283, 583–630 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leonori, T., Porretta, A.: Large solutions and gradient bounds for quasilinear elliptic equations. Commun. Partial Differ. Equ. 10(1080/03605302), 1169286 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Kawohl, B., Kutev, N.: A study on gradient blow up for viscosity solutions of fully nonlinear. Uniformly Elliptic Equ. Act. Math. Scientia 32 B(1), 15–40 (2012)

    Article  MATH  Google Scholar 

  20. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary. Journal de Mathèmatiques Pures et Appliquées 101(3), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Topp, E.: Existence and uniqueness for integro-differential equations with dominating drift terms. Comm. Partial Differ. Equ. 39(8), 1523–1554 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G. Dávila was partially supported by Fondecyt Grant No. 11150880. E. Topp was partially supported by Conicyt PIA Grant No. 79150056, and Fondecyt Grant No. 11160817. A. Quaas was partially supported by Fondecyt Grant No. 1151180, Programa Basal, CMM. U. de Chile and Millennium Nucleus Center for Analysis of PDE NC130017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Topp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dávila, G., Quaas, A. & Topp, E. An ODE approach for fractional Dirichlet problems with gradient nonlinearity. Math. Z. 291, 85–111 (2019). https://doi.org/10.1007/s00209-018-2074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2074-5

Navigation