Topological automorphism groups of compact quantum groups

Article
  • 15 Downloads

Abstract

We study the topological structure of the automorphism groups of compact quantum groups showing that, in parallel to a classical result due to Iwasawa, the connected component of identity of the automorphism group and of the “inner” automorphism group coincide. For compact matrix quantum groups, which can be thought of as quantum analogues of compact Lie groups, we prove that the inner automorphism group is a compact Lie group and the outer automorphism group is discrete. Applications of this to the study of group actions on compact quantum groups are highlighted. We end by providing examples of compact matrix quantum groups with infinitely-generated fusion rings, in stark contrast with the classical situation. Along the way we study the invariant theory of finite group actions on free Laurent rings and show that the rings of invariants are, in general, not finitely generated.

Keywords

Automorphism group Outer automorphism group Fusion ring Compact quantum group Dynamical system 

Mathematics Subject Classification

46L52 46L55 46L85 16T05 

Notes

Acknowledgements

This work was initiated at the 7th ECM satellite conference “Compact Quantum Groups” at Greifswald, Germany and the authors are grateful to the organizers, Uwe Franz, Malte Gerhold, Adam Skalski and Moritz Weber, for the invitation. The authors would also like to thank Yuki Arano and Makoto Yamashita for interesting discussions. The first author was partially supported by NSF grant DMS-1565226. The second author is supported by a DST Inspire Faculty Fellowship. We would like to thank the anonymous referees for numerous suggestions leading to the improvement of the paper.

References

  1. 1.
    Almkvist, G., Dicks, W., Formanek, E.: Hilbert series of fixed free algebras and noncommutative classical invariant theory. J. Algebra 93(1), 189–214 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Andruskiewitsch, N., Devoto, J.: Extensions of Hopf algebras. Algebra i Analiz 7(1), 22–61 (1995)MathSciNetMATHGoogle Scholar
  3. 3.
    Aubrun, G., Skalski, A., Speicher, R., Franz, U.: Quantum symmetries. volume. 2189 of lecture notes in mathematics. Springer, Berlin (2017)Google Scholar
  4. 4.
    Avitzour, D.: Noncommutative topological dynamics. ii. Trans. Amer. Math. Soc. 282(1), 121–135 (1982)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Banica, T.: Théorie des représentations du groupe quantique compact libre \({\rm O}(n)\). C. R. Acad. Sci. Paris Sér. I Math. 322(3), 241–244 (1996)MathSciNetMATHGoogle Scholar
  6. 6.
    Banica, T.: Le groupe quantique compact libre \({\rm U}(n)\). Comm. Math. Phys. 190(1), 143–172 (1997)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Banica, T.: Symmetries of a generic coaction. Math. Ann. 314(4), 763–780 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Banica, T.: Quantum automorphism groups of small metric spaces. Pacific J. Math. 219(1), 27–51 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Banica, T., Patri, I.: Maximal torus theory for compact quantum groups. to appear in Illinois J. Math. (2017)Google Scholar
  10. 10.
    Baumslag, G.: Some reflections on proving groups residually torsion-free nilpotent. I. Illinois J. Math. 54(1), 315–325 (2010)MathSciNetMATHGoogle Scholar
  11. 11.
    Bergman, G.M., Shelah, S.: Closed subgroups of the infinite symmetric group. Algebra Universalis 55(2–3), 137–173 (2006). Special issue dedicated to Walter TaylorMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bhowmick, J., Goswami, D.: Quantum group of orientation-preserving Riemannian isometries. J. Funct. Anal. 257(8), 2530–2572 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bhowmick, Jyotishman, Skalski, Adam, Soł tan, Piotr M.: Quantum group of automorphisms of a finite quantum group. J. Algebra 423, 514–537 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bichon, Julien: Quantum automorphism groups of finite graphs. Proc. Am. Math. Soc 131(3), 665–673 (2003). (electronic)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dicks, W., Formanek, E.: Poincaré series and a problem of S. Montgomery. Linear Multilinear Algebra 12(1), 21–30 (1982)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dijkhuizen, M.S., Koornwinder, T.H.: CQG algebras: a direct algebraic approach to compact quantum groups. Lett. Math. Phys. 32(4), 315–330 (1994)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fima, P., Mukherjee, K., Patri, I.: On compact bicrossed products. J. Noncommut. Geom. 11(4), 1521–1591 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Goswami, D., Joardar, S.: Non-existence of faithful isometric action of compact quantum groups on compact, connected Riemannian manifolds. ArXiv e-prints (2013)Google Scholar
  19. 19.
    Goswami, Debashish: Existence and examples of quantum isometry groups for a class of compact metric spaces. Adv. Math. 280, 340–359 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Green, W.L.: Topological dynamics and \(C^\ast \)-algebras. Trans. Am. Math. Soc. 210, 107–121 (1975)MathSciNetMATHGoogle Scholar
  21. 21.
    Halmos, P.R.: On automorphisms of compact groups. Bull. Am. Math. Soc. 49, 619–624 (1943)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Handelman, D.: Representation rings as invariants for compact groups and limit ratio theorems for them. Int. J. Math. 4(1), 59–88 (1993)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Harčenko, V.K.: Algebras of invariants of free algebras. Algebra i Logika 17(4), 478–487 (1978)MathSciNetGoogle Scholar
  24. 24.
    Iwasawa, K.: On some types of topological groups. Ann. Math. 2(50), 507–558 (1949)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Jaworski, W.: Strong approximate transitivity, polynomial growth, and spread out random walks on locally compact groups. Pacific J. Math. 170(2), 517–533 (1995)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Jaworski, Wojciech: Contraction groups, ergodicity, and distal properties of automorphisms of compact groups. Illinois J. Math. 56(4), 1023–1084 (2012)MathSciNetMATHGoogle Scholar
  27. 27.
    Kasprzak, Pawel, Skalski, Adam, Soltan, Piotr: The canonical central exact sequence for locally compact quantum groups. Math. Nachr. 290(8–9), 1303–1316 (2017)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kasprzak, Pawel, Soltan, Piotr M., Woronowicz, Stanisław L.: Quantum automorphism groups of finite quantum groups are classical. J. Geom. Phys. 89, 32–37 (2015)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Katznelson, Yitzhak: Ergodic automorphisms of \(T^{n}\) are Bernoulli shifts. Israel J. Math. 10, 186–195 (1971)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kitchens, Bruce, Schmidt, Klaus: Automorphisms of compact groups. Ergod. Theory Dyn. Syst. 9(4), 691–735 (1989)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Kitchens, Bruce P.: Expansive dynamics on zero-dimensional groups. Ergod. Theory Dyn. Syst. 7(2), 249–261 (1987)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Lane, D.R.: Free algebras of rank two and their automorphisms. (1976). Thesis (Ph.D.)–LondonGoogle Scholar
  33. 33.
    Magnus, Wilhelm: Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring. Math. Ann. 111(1), 259–280 (1935)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Mukherjee, Kunal., Patri, Issan.: Automorphisms of compact quantum groups. In: To appear in Proceedings of the London Mathematical SocietyGoogle Scholar
  35. 35.
    Natale, Sonia: Hopf algebra extensions of group algebras and Tambara-Yamagami categories. Algebras Represent. Theory 13(6), 673–691 (2010)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Passi, I.B.S.: Group rings and their augmentation ideals, volume 715 of lecture notes in mathematics. Springer, Berlin (1979)CrossRefGoogle Scholar
  37. 37.
    Patri, I.: Normal subgroups, center and inner automorphisms of compact quantum groups. Int. J. Math. 24(9), 1350071 (2013). (37)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Hertz, F.R.: Stable ergodicity of certain linear automorphisms of the torus. Ann. of Math. 162(1), 65–107 (2005). (2)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Segal, Graeme: The representation ring of a compact lie group. Inst. Hautes Tudes Sci. Publ. Math. 34(1), 113–128 (1968)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Takeuchi, Mitsuhiro: Relative Hopf modules–equivalences and freeness criteria. J. Algebra 60(2), 452–471 (1979)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Van Daele, Alfons, Wang, Shuzhou: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Wang, Shuzhou: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Wang, Shuzhou: Tensor products and crossed products of compact quantum groups. Proc. London Math. Soc. 71(3), 695–720 (1995). (3)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195(1), 195–211 (1998)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam (1998) p 845–884Google Scholar
  47. 47.
    Yadav, MK.: Class preserving automorphisms of finite \(p\)-groups: a survey. In: Groups St Andrews 2009 in Bath. Volume 2, volume 388 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge (2011) p 569–579Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity at BuffaloBuffaloUSA
  2. 2.Chennai Mathematical InstituteSIPCOT IT ParkChennaiIndia

Personalised recommendations