On the distribution of squarefree integers in arithmetic progressions



We investigate the error term of the asymptotic formula for the number of squarefree integers up to some bound, and lying in some arithmetic progression Open image in new window . In particular, we prove an upper bound for its variance as a varies over \((\mathbb {Z}/q\mathbb {Z})^{\times }\) which considerably improves upon earlier work of Blomer.


Squarefree integers Arithmetic progressions Variance 

Mathematics Subject Classification

11N37 11N69 



It is a great pleasure for the author to thank Philippe Michel and Ramon Moreira Nunes for interesting conversations related to the topics of this article. The financial support and the perfect working conditions provided by the École Polytechnique Fédérale de Lausanne are gratefully acknowledged.


  1. 1.
    Blomer, V.: The average value of divisor sums in arithmetic progressions. Q. J. Math. 59(3), 275–286 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Croft, M.J.: Square-free numbers in arithmetic progressions. Proc. Lond. Math. Soc. 30(3), 143–159 (1975)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Friedlander, J., Granville, A.: Limitations to the equi-distribution of primes. I. Ann. Math. 129(2), 363–382 (1989)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Heath-Brown, D.R.: Diophantine approximation with square-free numbers. Math. Z. 187(3), 335–344 (1984)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hooley, C.: A note on square-free numbers in arithmetic progressions. Bull. Lond. Math. Soc. 7, 133–138 (1975)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Le Boudec, P.: Affine congruences and rational points on a certain cubic surface. Algebra Number Theory 8(5), 1259–1296 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Montgomery, H. L.: Problems concerning prime numbers, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), Amer. Math. Soc., Providence, R. I., 1976, p 307–310. Proc. Sympos. Pure Math., Vol. XXVIIIGoogle Scholar
  8. 8.
    Nunes, R.M.: Squarefree numbers in arithmetic progressions. J. Number Theory 153, 1–36 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Turán, P.: Über die Primzahlen der arithmetischen progression. Acta Litt. Sci. Szeged 8, 226–235 (1937). (German)MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EPFL SB MATHGEOM TAN MA C3 604 (Bâtiment MA)LausanneSwitzerland

Personalised recommendations