Skip to main content
Log in

On central L-derivative values of automorphic forms

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the average and nonvanishing of the central L-derivative values of L(sf) and \(L(s,f_{K_{\scriptscriptstyle D}})\) for f in an orthogonal Hecke eigenbasis \(\mathcal {H}_{2k}\) of weight 2k cusp forms of level 1 for large odd k. Here \(f_{K_{\scriptscriptstyle D}}\) is the base change of f to an imaginary quadratic field \(K_{\scriptscriptstyle D}=\mathbb {Q}(\sqrt{D})\) with fundamental discriminant D. We prove asymptotic formulas for the first and second moments of \(L'(\frac{1}{2},f)\), as well as the first moment of \(L'(\frac{1}{2},f_{K_{\scriptscriptstyle D}})\), over \(\mathcal {H}_{2k}\) as odd \(k\rightarrow \infty \). Further, we employ mollifiers to establish that for sufficiently large k there are positive proportion of Hecke eigenforms f in \(\mathcal {H}_{2k}\) with \(L'(\frac{1}{2},f)\ne 0\). We also give applications of our results to Heegner cycles of high weights of the modular curve \(X_0(1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balkanova, O., Frolenkov, D.: Moments of \(L\)-functions and the Liouville–Green method. arXiv:1610.03465

  2. Blomer, V.: On the central value of symmetric square \(L\)-functions. Math. Z. 260(4), 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  4. Duke, W.: The critical order of vanishing of automorphic \(L\)-functions with large level. Invent. Math. 119(1), 165–174 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdélyi, A. (ed.): Tables of Integral Transforms, vol. I. McGraw-Hill, New York (1954)

    MATH  Google Scholar 

  6. Estermann, T.: On the representation of a number as the sum of two products. Proc. Lond. Math. Soc. s2 31(1), 123–133 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gross, B.H., Zagier, D.B.: Heegner points and derivatives of \(L\)-series. Invent. Math. 84, 225–320 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gross, B., Kohnen, W., Zagier, D.: Heegner points and derivatives of \(L\)-series. II. Math. Ann. 278, 497–562 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iwaniec, H., Kowalski, E.: Analytic Number Theory, vol. 53. Colloquium Publications, American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  10. Iwaniec, H., Sarnak, P.: Dirichlet \(L\)-functions at the central point. In: Győry, K., et al. (eds.) Number Theory in Progress, vol. 2, pp. 941–952. de Gruyter, Berlin (1999)

    Google Scholar 

  11. Iwaniec, H., Sarnak, P.: The non-vanishing of central values of automorphic \(L\)-functions and Landau–Siegel zeros. Isr. J. Math. 120, 155–177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khan, R.: Non-vanishing of the symmetric square \(L\)-function at the central point. Proc. Lond. Math. Soc. 100(3), 736–762 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kowalski, E., Michel, P.: The analytic rank of \(J_0(q)\) and zeros of automorphic \(L\)-functions. Duke Math. J. 100, 503–547 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kowalski, E., Michel, P.: A lower bound for the rank of \(J_0(q)\). Acta Arith. 94(4), 303–343 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kowalski, E., Michel, P., VanderKam, J.: Mollification of the fourth moment of automorphic \(L\)-functions and arithmetic applications. Invent. Math. 142, 95–151 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kowalski, E., Michel, P., VanderKam, J.: Non-vanishing of high derivatives of automorphic \(L\)-functions at the center of the critical strip. J. Reine Angew. Math. 526, 1–34 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kowalski, E., Michel, P., VanderKam, J.: Rankin–Selberg \(L\)-functions in the level aspect. Duke Math. J. 114(1), 123–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lau, Y.-K., Tsang, K.-M.: A mean square formula for central values of twisted automorphic \(L\)-functions. Acta Arith. 118(3), 231–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lau, Y.-K., Wu, J.: A density theorem on automorphic \(L\)-functions and some applications. Trans. Am. Math. Soc. 358(1), 441–472 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo, W.: Nonvanishing of the central \(L\)-values with large weight. Adv. Math. 285, 220–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Michel, P., VanderKam, J.: Non-vanishing of high derivatives of Dirichlet \(L\)-functions at the central point. J. Number Theory 81, 130–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Olver, F.W.J., et al. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  23. Skoruppa, N., Zagier, D.: Jacobi forms and a certain space of modular forms. Invent. Math. 94, 113–146 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Soundararajan, K.: Nonvanishing of quadratic Dirichlet \(L\)-functions at \(s=\frac{1}{2}\). Ann. Math. 152, 447–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. VanderKam, J.: The rank of quotients of \(J_0(N)\). Duke Math. J. 97, 545–577 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge University Press, Cambridge (1996) (reprint of Cambridge Mathematical Library edition)

  27. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1969) (reprint of the 4th edition)

  28. Xue, H.: Gross–Kohnen–Zagier theorem for higher weight forms. Math. Res. Lett. 17(3), 573–586 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, S.: Heights of Heegner cycles and derivatives of \(L\)-series. Invent. Math. 130, 99–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Wenzhi Luo for suggesting the investigation of central L-derivative values and for his valuable advice and constant support, and Professor Hui Xue for answering many questions regarding Heegner cycles of high weights. The author also thanks Yongxiao Lin and Professor Sheng-Chi Liu for their encouragement and helpful conversations. Finally, the author is grateful to the referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenhui Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S. On central L-derivative values of automorphic forms. Math. Z. 288, 1327–1359 (2018). https://doi.org/10.1007/s00209-017-1936-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1936-6

Keywords

Mathematics Subject Classification

Navigation