Skip to main content
Log in

Global spectra, polytopes and stacky invariants

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given a convex polytope, we define its geometric spectrum, a stacky version of Batyrev’s stringy E-functions, and we prove a stacky version of a formula of Libgober and Wood about the E-polynomial of a smooth projective variety. As an application, we get a closed formula for the variance of the geometric spectrum and a Noether’s formula for two dimensional Fano polytopes (polytopes whose vertices are primitive lattice points; a Fano polytope is not necessarily smooth). We also show that this geometric spectrum is equal to the algebraic spectrum (the spectrum at infinity of a tame Laurent polynomial whose Newton polytope is the polytope alluded to). This gives an explanation and some positive answers to Hertling’s conjecture about the variance of the spectrum of tame regular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batyrev, V.: Stringy Hodge numbers of varieties with Gorenstein canonical singularities. In: Saito, M.-H., et al. (eds.) Integrable Systems and Algebraic Geometry. Proceedings of the 41st Taniguchi Symposium, Japan 1997. World Scientific, Singapore, pp. 1–32 (1998)

  2. Batyrev, V.: Stringy Hodge numbers and Virasoro algebra. Math. Res. Lett. 7, 155–164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batyrev, V., Schaller, K.: Stringy Chern classes of singular toric varieties and their applications. arXiv:1607.04135

  4. Beck, M., Robbins, S.: Computing the Continuous Discretely. Springer, New York (2007)

    Google Scholar 

  5. Borisov, L., Chen, L., Smith, G.: The orbifold Chow ring of toric Deligne–Mumford stacks. J. Am. Soc. 18(1), 193–215 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Cox, D., Little, J., Schenck, A.: Toric Varieties, vol. 124. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  7. Dimca, A.: Monodromy and Hodge theory of regular functions. In: Siersma, D., et al. (eds.) New Developments in Singularity Theory, pp. 257–278. Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  8. Douai, A.: Global spectra, polytopes and stacky invariants. arXiv:1603.08693

  9. Douai, A.: Quantum differential systems and some applications to mirror symmetry. arXiv:1203.5920

  10. Douai, A.: Quantum differential systems and rational structures. Manuscr. Math. 145(3), 285–317 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Douai, A., Mann, E.: The small quantum cohomology of a weighted projective space, a mirror D-module and their classical limits. Geometriae Dedicata 164, 187–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Douai, A., Sabbah, C.: Gauss–Manin systems, Brieskorn lattices and Frobenius structures I. Ann. Inst. Fourier 53(4), 1055–1116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Douai, A., Sabbah, C.: Gauss–Manin systems, Brieskorn lattices and Frobenius structures II. In: Hertling, C., Marcolli, M. (eds.) Frobenius Manifolds. Aspects of Mathematics E, vol. 36 (2004)

  14. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)

  15. Givental, A.: Homological geometry and mirror symmetry. Talk at ICM-94. In: Proceedings of ICM-94 Zurich, pp. 472–480. Birkhäuser, Basel (1995)

  16. Hertling, C.: Frobenius Manifolds and Moduli Spaces for Singularities. Cambridge Tracts in Mathematics, vol. 151. Cambridge University Press, Cambridge (2002)

  17. Hertling, C.: Frobenius manifolds and variance of the spectral numbers. In: Siersma, D., et al. (eds.) New Developments in Singularity Theory, pp. 235–255. Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  18. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222

  19. Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)

    Article  MathSciNet  Google Scholar 

  20. Libgober, A.S., Wood, J.W.: Uniqueness of the complex structure on Kähler manifolds of certain homotopy types. J. Differ. Geom. 32(1), 139–154 (1990)

    Article  MATH  Google Scholar 

  21. Mustaţă, M., Payne, S.: Ehrhart polynomials and stringy Betti numbers. Mathematische Annalen 333(4), 787–795 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nemethi, A., Sabbah, C.: Semicontinuity of the spectrum at infinity. Abh. Math. Sem. Univ. Hambg. 69, 25–35 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reichelt, T., Sevenheck, C.: Logarithmic Frobenius manifolds, hypergeometric systems and quantum \({\cal{D}} \)-modules. J. Algebraic Geom. 24, 201–281 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sabbah, C.: Hypergeometric periods for a tame polynomial. Portugaliae Mathematica, Nova Serie 63(2), 173–226 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Stapledon, A.: Weighted Ehrhart theory and orbifold cohomology. Adv. Math. 219, 63–88 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Veys, W.: Arc Spaces, Motivic Integration and Stringy Invariants. Advanced Studies in Pure Mathematics, vol. 43, pp. 529–572. The Mathematical Society of Japan, Tokyo (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Douai.

Additional information

A. Douai was partially supported by the Grant ANR-13-IS01-0001-01 of the Agence nationale de la recherche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douai, A. Global spectra, polytopes and stacky invariants. Math. Z. 288, 889–913 (2018). https://doi.org/10.1007/s00209-017-1918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1918-8

Keywords

Mathematics Subject Classification

Navigation