Mathematische Zeitschrift

, Volume 288, Issue 3–4, pp 875–887 | Cite as

Asymptotics of invariant metrics in the normal direction and a new characterisation of the unit disk

  • Erlend F. Wold


We give improvements of estimates of invariant metrics in the normal direction on strictly pseudoconvex domains. Specifically we will give the second term in the expansion of the metrics. This depends on an improved localisation result and estimates in the one variable case. Finally we will give a new characterisation of the unit disk in \({\mathbb {C}}\) in terms of the asymptotic behaviour of quotients of invariant metrics.


  1. 1.
    Diederich, K., Fornæss, J.E., Wold, E.F.: Exposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-type. J. Geom. Anal. 24(4), 2124–2134 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Diederich, K., Fornæss, J.E., Wold, E.F.: A Characterisation of the ball. Int. J. Math. 279 (2016)Google Scholar
  3. 3.
    Forstnerič, F.: Noncritical holomorphic functions on Stein manifolds. Acta Math. 191, 143–189 (2003)Google Scholar
  4. 4.
    Fu, S.: Asymptotic expansions of invariant metrics of strictly pseudoconvex domains. Can. Math. Bull. 38(2), 196–206 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Graham, I.: Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \({\mathbb{C}}^n\) with smooth boundary. Trans. Am. Math. Soc. 207, 219–240 (1975)zbMATHGoogle Scholar
  6. 6.
    Greene, R.E., Wu, H.: On a new gap phenomenon in Riemannian geometry. Proc. NatL. Acad. Sci. USA 79(2), 714–715 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ma, D.: Sharp Estimates of the Kobayashi Metric Near Strongly Pseudoconvex Points. The Madison Symposium on Complex Analysis (Madison, WI, 1991), 329 –338, Contemp. Math. 137, Amer. Math. Soc., Providence, RI (1992)Google Scholar
  8. 8.
    Nikolov, N., Trybula, M., Andreev, L.: Boundary behaviour of invariant functions on planar domains. Complex Variables Elliptic Equ. 61(8), 1064–1072 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Tsuji, M.: Potential theory in modern function theory. Reprinting of the: original. Chelsea Publishing Co., New York (1959)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Matematisk InstituttUniversitetet i OsloOsloNorway

Personalised recommendations