Mathematische Zeitschrift

, Volume 288, Issue 3–4, pp 741–755 | Cite as

Properties of compact center-stable submanifolds

  • Andy Hammerlindl


We show that a partially hyperbolic system can have at most a finite number of compact center-stable submanifolds. We also give sufficient conditions for these submanifolds to exist and consider the question of whether they can intersect each other.


Partial hyperbolicity Attractors Center-stable submanifolds 

Mathematics Subject Classification

37D30 37C70 



The author thanks Rafael Potrie for beneficial conversations and the anonymous reviewer for helpful comments.


  1. 1.
    Bonatti, C., Crovisier, S.: Center manifolds for partially hyperbolic sets without strong unstable connections. J. Inst. Math. Jussieu 15(4), 785–828 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brin, M., Burago, D., Ivanov, S.: Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. J. Mod. Dyn. 3(1), 1–11 (2009)Google Scholar
  3. 3.
    Brock Fuller, F.: On the surface of section and periodic trajectories. Am. J. Math. 87(2), 473–480 (1965)Google Scholar
  4. 4.
    Franks, J.: Anosov diffeomorphisms. In: Global Analysis: Proceedings of the Symposia in Pure Mathematics, vol. 14, pp. 61–93 (1970)Google Scholar
  5. 5.
    Hammerlindl, A.: Constructing Center-Stable Tori. Preprint (2016).
  6. 6.
    Hammerlindl, A., Potrie, R.: Partial hyperbolicity and classification: a survey. Ergod. Theory Dyn. Syst. (2016). doi: 10.1017/etds.2016.50
  7. 7.
    Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds, Volume 583 of Lecture Notes in Mathematics. Springer, Berlin (1977)Google Scholar
  8. 8.
    Rodriguez Hertz, F., Rodriguez Hertz, M.A., Ures, R.: Tori with hyperbolic dynamics in 3-manifolds. J. Mod. Dyn. 5(1), 185–202 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rodriguez Hertz, F., Rodriguez Hertz, J., Ures, R.: Center-unstable foliations do not have compact leaves. Math. Res. Lett. 23(6), 1819–1832 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rodriguez Hertz, F., Rodriguez Hertz, M.A., Ures, R.: A non-dynamically coherent example on \({\mathbb{T}}^3\). Ann. Inst. H. Poincaré Anal. Non Linéaire 33(4), 1023–1032 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesMonash UniversityVictoriaAustralia

Personalised recommendations