Advertisement

Mathematische Zeitschrift

, Volume 288, Issue 3–4, pp 689–712 | Cite as

On the Brauer–Picard groups of fusion categories

  • Ian Marshall
  • Dmitri Nikshych
Article

Abstract

We develop methods of computation of the Brauer–Picard groups of fusion categories and apply them to compute such groups for several classes of fusion categories of prime power dimension: representation categories of elementary abelian groups with twisted associativity, extra special p-groups, and the Kac–Paljutkin Hopf algebra. We conclude that many finite groups of Lie type occur as composition factors of the Brauer–Picard groups of pointed fusion categories.

Notes

Acknowledgements

We are grateful to Derek Holt, Geoffrey Mason, Victor Ostrik, and Leonid Vainerman for helpful discussions. We thank Cesar Galindo for useful discussions and for pointing the paper [11] to us. We thank Ehud Meir for explaining to us the classification of module categories over Tambara–Yamagami categories from [18] and sharing his calculations with us. Finally, we thank the anonymous referee for carefully reading the paper and suggesting many improvements of the exposition. The authors were partially supported by the NSA Grant H98230-15-1-0003. The second author was partially supported by the NSA Grant H98230-16-1-0008.

References

  1. 1.
    Adem, A.: Cohomology of finite groups, 2nd edn. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bontea, C., Nikshych, D.: On the Brauer-Picard group of a finite symmetric tensor category. J. Algebra 440, 187–218 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carnovale, G.: The Brauer group of modified supergroup algebras. J. Algebra 305(2), 993–1036 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi-Hopf algebras, group cohomology, and orbifold models. Nucl. Phys. B, Proc. Suppl. 18(2), 60–72 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: Group-theoretical properties of nilpotent modular categories. e-print arXiv:0704.0195 (2007)
  6. 6.
    Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories I. Sel. Math. 16(1), 1–119 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Davydov, A., Müger, M., Nikshych, D., Ostrik, V.: The Witt group of non-degenerate braided fusion categories. Journal für die reine und angewandte Mathematik 677, 135–177 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2015)CrossRefzbMATHGoogle Scholar
  9. 9.
    Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quant. Topol, 1(3), 209–273 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories. Adv. Math. 226(1), 176–205 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Galindo, C., Plavnik, J.: Tensor functor between Morita duals of fusion categories, e-print arXiv:1407.2783 (2014)
  12. 12.
    Gelaki, S., Naidu, D., Nikshych, D.: Centers of graded fusion categories. Algebra Number Theory 3(8), 959–990 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gelaki, S., Nikshych, D.: Nilpotent fusion categories. Adv. Math. 217(3), 1053–1071 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goff, C., Mason, G., Ng, S.-H.: On the gauge equivalence of twisted quantum doubles of elementary abelian and extra-special \(2\)-groups. J. Algebra 312(2), 849–875 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kac, G., Paljutkin, V.: Finite ring groups, Trans. Moscow Math. Soc. 251–294 (1966)Google Scholar
  16. 16.
    Lentner, S., Priel, J.: A decomposition of the Brauer-Picard group of the representation category of a finite group, e-print arXiv:1506.07832 (2015)
  17. 17.
    Mason, G.: Reed–Muller codes, the fourth cohomology group of a finite group, and the \(\beta \)-invariant. J. Algebra 312(1), 218–227 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Meir, E., Musicantov, E.: Module categories over graded fusion categories. J. Pure Appl. Algebra 216(11), 2449–2466 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mason, G., Ng, S.-H.: Group cohomology and gauge equivalence of some twisted quantum doubles. Trans. Amer. Math. Soc. 353, 3465–3509 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mason, G., Ng, S.-H.: Cleft extensions and quotients of twisted quantum doubles. Dev. Retrosp. Lie Theory, Dev. Math. 38, 229–246 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Naidu, D.: Categorical Morita equivalence for group-theoretical categories. Comm. Algebra 35(11), 3544–3565 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Naidu, D., Nikshych, D.: Lagrangian subcategories and braided tensor equivalences of twisted quantum doubles of finite groups. Comm. Math. Phys. 279, 845–872 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Naidu, D., Nikshych, D., Witherspoon, S.: Fusion subcategories of representation categories of twisted quantum doubles of finite groups. Int. Math. Res. Notices 22, 4183–4219 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Nikshych, D., Riepel, B.: Categorical Lagrangian Grassmannians and Brauer–Picard groups of pointed fusion categories. J. Algebra 411, 191–214 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ostrik, V.: Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not. (2003), 1507–1520Google Scholar
  26. 26.
    Pollatsek, H.: First cohomology groups of some linear groups over fields of characteristic two. Ill. J. Math. 15(3), 393–417 (1971)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Riepel, B.: Brauer–Picard groups of pointed fusion categories, Ph.D. Thesis, University of New Hampshire (2014)Google Scholar
  28. 28.
    Seligman, G.B.: Modular Lie Algebras. Springer, Berlin (1967)CrossRefzbMATHGoogle Scholar
  29. 29.
    Tambara, D.: Representations of tensor categories with fusion rules of self-duality for abelian groups. Israel J. Math. 118(1), 29–60 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Tambara, D., Yamagami, S.: Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 209(2), 692–707 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Uribe, B.: On the classification of pointed fusion categories up to weak Morita equivalence, e-print arXiv:1511.05522 (2015)
  32. 32.
    Wilson, R.A.: The Finite Simple Groups. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of New HampshireDurhamUSA

Personalised recommendations