Skip to main content
Log in

Representability of Chern–Weil forms

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we look at two naturally occurring situations where the following question arises. When one can find a metric so that a Chern–Weil form can be represented by a given form? The first setting is semi-stable Hartshorne-ample vector bundles on complex surfaces where we provide evidence for a conjecture of Griffiths by producing metrics whose Chern forms are positive. The second scenario deals with a particular rank-2 bundle (related to the vortex equations) over a product of a Riemann surface and the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It follows from a theorem proven in [8, 13] that this equality holds even at the level of Chern–Weil forms for Griffiths-positive bundles.

  2. Incidentally, Eq. 3.9 can be solved using the existence theorem of Kazdan–Warner [14]. This provides an alternative proof of existence.

References

  1. Alvarez-Consul, L., Garcia-Fernandez, M., Garcia-Prada, O.: Gravitating vortices and the Einstein–Bogomol’nyi equations. arXiv: 1606.07699

  2. Alvarez-Consul, L., Garcia-Fernandez, M., Garcia-Prada, O.: Gravitating vortices, cosmic strings, and the Kähler–Yang–Mills equations. arXiv: 1510.03810. (To appear in Commun. Math. Phys.)

  3. Alvarez-Consul, L., Garcia-Fernandez, M., Garcia-Prada, O.: Coupled equations for Kähler metrics and Yang–Mills connections. Geom. Top. 17, 2731–2812 (2013)

    Article  MATH  Google Scholar 

  4. Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. 169, 531–560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloch, S., Gieseker, D.: The positivity of the Chern classes of an ample vector bundle. Invent. Math. 12, 112–117 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bott, R., Chern, S.S.: Hermitian vector bundles and equidistribution of the zeroes of their holomorphic cross-sections. Acta. Math. 114, 71–112 (1968)

    Article  MATH  Google Scholar 

  7. Campana, F., Flenner, H.: A characterization of ample vector bundles on a curve. Math. Ann. 287(1), 571–575 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diverio, S.: Segre forms and Kobayashi–Lübke inequality. Math. Z. 283, 1033–1047 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donaldson, S.: Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 50(1), 1–26 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fulton, W., Lazarsfeld, R.: Positive polynomials for ample vector bundles. Ann. Math. 118, 35–60 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. García-Prada, O.: Invariant connections and vortices. Commun. Math. Phys. 156, 527–546 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guler. D.: Chern forms of positive vector bundles. Electronic Thesis or Dissertation. Ohio State University (2006) https://etd.ohiolink.edu/

  13. Guler, D.: On Segre forms of positive vector bundles. Can. Math. Bull. 55(1), 108–113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kazdan, J.L., Warner, F.W.: Curvature functions for compact 2-manifolds. Ann. Math. 99, 1447 (1978)

    MathSciNet  Google Scholar 

  15. Kobayashi, S.: Differential geometry of complex vector bundles. Princeton University Press, Princeton (2014)

    Google Scholar 

  16. Mourougane, C., Takayama, S.: Hodge metrics and positivity of direct images. Crelles J. 2007(606), 167–178 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pingali, V.: A fully nonlinear generalized Monge–Ampère PDE on a torus. Elec. J. Diff. Eq. 2014(211), 1–8 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Siu, Y.T.: Lectures on Hermitian–Einstein Metrics for Stable Bundles and Kähler–Einstein Metrics. Birkhäuser, Basel (1987)

    Book  MATH  Google Scholar 

  19. Uhlenbeck, K., Yau, S.T.: On the existence of Hermitian–Yang–Mills connections in stable vector bundles. Commun. Pure Appl. Math. 39(S1), S257–S293 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Umemura, H.: Some results in the theory of vector bundles. Nagoya Math. J. 52, 97–128 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yau, S.T.: On the Ricci curvature of a compact kähler manifold and the complex Monge–Ampère equation I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Harish Seshadri for useful suggestions, as well as for his support and encouragement. We also thank M.S. Narasimhan for pointing out the existence of approximate Hermite–Einstein metrics on semi-stable bundles, and Mario Garcia–Fernandez for answering questions about his paper. Lastly, our gratitude extends copiously to the anonymous referee for a careful reading of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vamsi Pritham Pingali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pingali, V.P. Representability of Chern–Weil forms. Math. Z. 288, 629–641 (2018). https://doi.org/10.1007/s00209-017-1903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1903-2

Keywords

Navigation