Advertisement

Mathematische Zeitschrift

, Volume 288, Issue 1–2, pp 541–563 | Cite as

Counting number fields in fibers (with an Appendix by Jean Gillibert)

  • Yuri Bilu
Article

Abstract

Let X be a projective curve over \({\mathbb Q}\) and \({t\in {\mathbb Q}(X)}\) a non-constant rational function of degree \({n\ge 2}\). For every \({\tau \in {\mathbb Z}}\) pick \({P_\tau \in X(\bar{\mathbb Q})}\) such that \({t(P_\tau )=\tau }\). Dvornicich and Zannier proved that, for large N, the field \({\mathbb Q}(P_1, \ldots , P_N)\) is of degree at least \(e^{cN/\log N}\) over \({\mathbb Q}\), where \({c>0}\) depends only on X and t. In this paper we extend this result, replacing \({\mathbb Q}\) by an arbitrary number field.

Notes

Acknowledgements

A substantial part of this article was written during my stay the Max-Planck-Institut für Mathematik in Bonn. I thank this institute for the financial support and stimulating working conditions.

This article belongs to a joint project with Jean Gillibert. I thank him for allowing me to publish this part of this project as a separate article, for adding a beautiful appendix, and for many stimulating discussions.

References

  1. 1.
    Beckmann, S.: On extensions of number fields obtained by specializing branched coverings. J. Reine Angew. Math. 419, 27–53 (1991)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bilu, Yu., Gillibert, J.: Chevalley–Weil Theorem and Subgroups of Class Groups, a manuscriptGoogle Scholar
  3. 3.
    Bilu, Yu.F., Luca, F.: Divisibility of class numbers: enumerative approach. J. Reine Angew. Math. 578, 79–91 (2005)Google Scholar
  4. 4.
    Bilu, Yu., Luca, F.: Diversity in parametric families of number fields. In: Elsholtz, C., Grabner, P. (eds.) Number Theory-Diophantine Problems, Uniform Distribution and Applications. Springer (to appear)Google Scholar
  5. 5.
    Conrad, B.: Inertia groups and fibers. J. Reine Angew. Math. 522, 1–26 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Davenport, H., Lewis, D., Schinzel, A.: Polynomials of certain special types. Acta Arith. 9, 107–116 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dvornicich, R., Zannier, U.: Fields containing values of algebraic functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21, 421–443 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Grothendieck, A., et al.: Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Mathematics vol. 224. Springer, Berlin (1971)Google Scholar
  9. 9.
    Grothendieck, A., Murre, J.P.: The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, Lecture Notes in Mathematics. vol. 208. Springer, Berlin (1971)Google Scholar
  10. 10.
    Lang, S.: Algebra (Revised Third Edition), GTM 211. Springer, Berin (2002)Google Scholar
  11. 11.
    Serre, J.-P.: Lectures on the Mordell–Weil Theorem, 3rd edn. Vieweg & Sohn, Braunschweig (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Walker, R.J.: Algebraic Curves. Springer, Berlin (1950)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut de Mathématiques de Bordeaux, Université de Bordeaux et CNRSTalenceFrance

Personalised recommendations